

# **CERTIFICATE OF ACCREDITATION**

#### The ANSI National Accreditation Board

Hereby attests that

# The Standards Institution of Israel Electrical and Electronics Laboratory Calibration Center

42 Chaim Levanon Street Tel Aviv, 6997701 Israel

Fulfills the requirements of

## ISO/IEC 17025:2017

In the fields of

#### CALIBRATION and DIMENSIONAL MEASUREMENT

This certificate is valid only when accompanied by a current scope of accreditation document.

The current scope of accreditation can be verified at <a href="https://www.anab.org">www.anab.org</a>.

Jason Stine, Vice President Expiry Date: 14 May 2026

Certificate Number: AC-2699









### SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

## The Standards Institution of Israel Electrical and Electronics Laboratory Calibration Center

42 Chaim Levanon Street
Tel Aviv, 6997701 Israel

Michael Kiss E-Mail: kiss@sii.org.il

#### CALIBRATION AND DIMENSIONAL MEASUREMENT

Valid to: May 14, 2026 Certificate Number: AC-2699

#### **CALIBRATION**

**Electrical – DC/Low Frequency** 

| Parameter/Equipment                                 | Range 5 [including end point] (does not include end point)                                                  | Expanded Uncertainty of Measurement (+/-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Reference Standard,<br>Method, and/or<br>Equipment |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
|                                                     | 0 mV                                                                                                        | 904 nV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Short measurement                                  |
| DC Voltage, Measuring Instruments <sup>1,2</sup>    | (0.1 to 190] μV<br>(0.19 to 1.9] mV<br>(1.9 to 19] mV<br>(19 to 190] mV<br>(0.19 to 1.9] V<br>(1.9 to 19] V | $\sqrt{\left(8.1 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(904 \text{nV}\right)^{2}} + 0.93 \text{nV}$ $\sqrt{\left(8.1 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(904 \text{nV}\right)^{2}} + 9.76 \text{nV}$ $\sqrt{\left(8.1 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(905 \text{nV}\right)^{2}} + 92.3 \text{nV}$ $\sqrt{\left(8.1 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(1.03 \mu V\right)^{2}} + 4.33 \text{nV}$ $\sqrt{\left(5.8 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(2.91 \mu V\right)^{2}} + 994 \text{nV}$ $\sqrt{\left(3.5 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(21.3 \mu V\right)^{2}} + 2.57 \mu V$ | Calibrator Datron 4708                             |
| DC Voltage, Measuring Instruments 1,2               | (19 to 190] V<br>(190 to 1 000] V                                                                           | $\sqrt{\left(5.8 \frac{\mu V}{V} \cdot OR\right)^2 + \left(296 \mu V\right)^2 + 49.5 \mu V}$ $\sqrt{\left(8.1 \frac{\mu V}{V} \cdot OR\right)^2 + \left(2.92 \text{mV}\right)^2 + 271 \mu V}$                                                                                                                                                                                                                                                                                                                                                                                                                                           | Calibrator Datron 4708                             |
| DC Voltage,<br>Measuring Instruments <sup>1,2</sup> | (1 000 to 2 000] V                                                                                          | $\sqrt{\left(463\frac{\mu V}{V}\cdot OR\right)^2 + \left(1.15\ V\right)^2} + 263\text{mV}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DC High Voltage<br>Calibrator<br>PINTEK HVC-801    |





| Parameter/Equipment                                 | Range 5 [including end point] (does not include end point)                                                                  | Expanded Uncertainty of Measurement (+/-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Reference Standard,<br>Method, and/or<br>Equipment |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| DC Voltage,<br>Measuring Instruments <sup>1,2</sup> | (2 000 to 20 000] V                                                                                                         | $\sqrt{\left(463 \frac{\mu V}{V} \cdot OR\right)^2 + \left(11.5 V\right)^2 + 2.63 V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Precision High Voltage<br>Meter VITREK 4700A       |
| DC Voltage,<br>Measuring Instruments <sup>1,2</sup> | (20 to 40] kV                                                                                                               | 24 V/kV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | High Voltage Probe:<br>FLUKE 80K-40                |
|                                                     | 0 mV                                                                                                                        | 1.7 μV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Calibrator Datron 4708                             |
| DC Voltage,<br>Sources <sup>1,2</sup>               | (0.1 μV to 190] μV<br>(0.19 mV to 1.9] mV<br>(1.9 mV to 19] mV<br>(19 mV to 190] mV<br>(0.19 V to 1.9] V<br>(1.9 V to 19] V | $\sqrt{\left(8.1\frac{\mu V}{V} \cdot OR\right)^{2} + \left(905 \text{ nV}\right)^{2}} + 1.34 \text{ nV}$ $\sqrt{\left(8.1\frac{\mu V}{V} \cdot OR\right)^{2} + \left(906 \text{ nV}\right)^{2}} + 10.0 \text{ nV}$ $\sqrt{\left(8.1\frac{\mu V}{V} \cdot OR\right)^{2} + \left(1.03 \mu V\right)^{2}} + 86.7 \text{ nV}$ $\sqrt{\left(8.1\frac{\mu V}{V} \cdot OR\right)^{2} + \left(1.03 \mu V\right)^{2}} + 433 \text{ nV}$ $\sqrt{\left(5.8\frac{\mu V}{V} \cdot OR\right)^{2} + \left(2.91\mu V\right)^{2}} + 994 \text{ nV}$ $\sqrt{\left(3.5\frac{\mu V}{V} \cdot OR\right)^{2} + \left(21.3\mu V\right)^{2}} + 2.57 \mu V$ | DMM Datron 1281                                    |
| DC Voltage,<br>Sources <sup>1,2</sup>               | (19 to 190] V<br>(190 to 1 000] V<br>(1 000 to 2 000] V                                                                     | $\sqrt{\left(5.8 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(296 \mu V\right)^{2} + 49.5 \mu V}$ $\sqrt{\left(8.1 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(2.92 \text{ mV}\right)^{2} + 271 \mu V}$ $\sqrt{\left(463 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(1.15 V\right)^{2} + 263 \text{ mV}}$                                                                                                                                                                                                                                                                                                                           | Precision High Voltage<br>Meter<br>VITREK 4700A    |
| DC Voltage,                                         | (2 000 to 20 000] V                                                                                                         | $\sqrt{\left(463\frac{\mu V}{V}\cdot OR\right)^2 + \left(11.5 V\right)^2} + 2.63 V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | High Voltage Probe:                                |
| Sources 1,2                                         | (20 to 30] kV                                                                                                               | 24 V/kV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FLUKE 80K-40                                       |
| DC Current, Measuring Instruments <sup>1,2</sup>    | 0 pA                                                                                                                        | 810 fA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Open measurement                                   |
| DC Current, Measuring Instruments <sup>1,2</sup>    | (0 to 2] pA<br>(2 to 20] pA<br>(20 to 200] pA                                                                               | $\sqrt{(0.49\% \cdot \text{OR})^2 + (810 \text{ fA})^2} + 1.58 \text{ fA}$ $\sqrt{(0.43\% \cdot \text{OR})^2 + (810 \text{ fA})^2} + 12.4 \text{ fA}$ $\sqrt{(0.29\% \cdot \text{OR})^2 + (8.02 \text{ pA})^2} + 9.81 \text{ fA}$                                                                                                                                                                                                                                                                                                                                                                                                  | Calibrator KEITHLEY 263                            |





| Parameter/Equipment                                | Range 5 [including end point] (does not include end point)                                                                           | Expanded Uncertainty of Measurement (+/-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Reference Standard,<br>Method, and/or<br>Equipment |
|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| DC Current Measuring<br>Instruments <sup>1,2</sup> | (0.2 to 2] nA<br>(2 to 20] nA<br>(20 to 200] nA<br>(0.2 to 2] μA                                                                     | $\sqrt{\left(752 \frac{\mu A}{A} \cdot OR\right)^{2} + \left(20 \text{ pA}\right)^{2}} + 65.1 \text{ fA}$ $\sqrt{\left(752 \frac{\mu A}{A} \cdot OR\right)^{2} + \left(200 \text{ pA}\right)^{2}} + 554 \text{ fA}$ $\sqrt{\left(405 \frac{\mu A}{A} \cdot OR\right)^{2} + \left(2.0 \text{ nA}\right)^{2}} + 5.12 \text{ pA}$ $\sqrt{\left(289 \frac{\mu A}{A} \cdot OR\right)^{2} + \left(117 \text{ pA}\right)^{2}} + 104 \text{ pA}$                                                                                                                                                                                                                                                                                                                                                                   | Calibrator KEITHLEY 263                            |
| DC Current Measuring<br>Instruments <sup>1,2</sup> | (2 to 19] μA<br>(19 to 190] μA<br>(0.19 to 1.9] mA<br>(1.9 to 19] mA<br>(19 to 190] mA<br>(0.19 to 1.9] A                            | $\sqrt{\frac{116 \frac{\mu A}{A} \cdot OR}{A}^{2} + (3.06 \text{ nA})^{2}} + 1.12 \text{ nA}$ $\sqrt{\frac{116 \frac{\mu A}{A} \cdot OR}{A}^{2} + (3.06 \text{ nA})^{2}} + 2.09 \text{ nA}$ $\sqrt{\frac{46.3 \frac{\mu A}{A} \cdot OR}{A}^{2} + (167 \text{ nA})^{2}} + 45.5 \text{ nA}$ $\sqrt{\frac{46.3 \frac{\mu A}{A} \cdot OR}{A}^{2} + (1.96 \mu A)^{2}} + 412 \text{ nA}$ $\sqrt{\frac{46.3 \frac{\mu A}{A} \cdot OR}{A}^{2} + (1.96 \mu A)^{2}} + 1.02 \mu A$ $\sqrt{\frac{116 \frac{\mu A}{A} \cdot OR}{A}^{2} + (36 \mu A)^{2}} + 20.8 \mu A$                                                                                                                                                                                                                                                  | Calibrator DATRON 4708                             |
| DC Current, Measuring Instruments 1,2              | (1.9 to 3] A<br>(3 to 10] A<br>(10 to 20] A<br>(20 to 32] A<br>(32 to 105] A<br>(105 to 160] A<br>(160 to 525] A<br>(525 to 1 000] A | $\sqrt{\left(440 \frac{\mu A}{A} \cdot OR\right)^{2} + \left(783 \mu A\right)^{2}} + 39.4 \mu A$ $\sqrt{\left(579 \frac{\mu A}{A} \cdot OR\right)^{2} + \left(3.56 \text{ mA}\right)^{2}} + 474 \mu A$ $\sqrt{\left(637 \frac{\mu A}{A} \cdot OR\right)^{2} + \left(8.74 \text{ mA}\right)^{2}} + 3.82 \text{ mA}$ $\sqrt{\left(0.30 \% \cdot OR\right)^{2} + \left(7.94 \text{ mA}\right)^{2}} + 57.3 \text{ mA}$ $\sqrt{\left(0.30 \% \cdot OR\right)^{2} + \left(27 \text{ mA}\right)^{2}} + 194 \text{ mA}$ $\sqrt{\left(0.30 \% \cdot OR\right)^{2} + \left(39.9 \text{ mA}\right)^{2}} + 350 \text{ mA}$ $\sqrt{\left(0.30 \% \cdot OR\right)^{2} + \left(134 \text{ mA}\right)^{2}} + 1.18 \text{ A}$ $\sqrt{\left(0.30 \% \cdot OR\right)^{2} + \left(350 \text{ mA}\right)^{2}} + 2.33 \text{ A}$ | Calibrator FLUKE 5520A                             |
| DC Current Sources 1,2                             | 0 nA                                                                                                                                 | 2 nA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Open measurement                                   |





| Parameter/Equipment                              | Range <sup>5</sup> [including end point] (does not include end point)                                                                             | Expanded Uncertainty of Measurement (+/-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Reference Standard,<br>Method, and/or<br>Equipment                      |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| DC Current Sources <sup>1,2</sup>                | (0 to 120] nA                                                                                                                                     | $\sqrt{\left(34.7 \frac{\mu A}{A} \cdot OR\right)^2 + \left(2.01 \text{ nA}\right)^2} - \frac{4.44 \text{ pA}}{}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DMM<br>HP 3458A                                                         |
| DC Current Sources <sup>1,2</sup>                | (0.12 to 1.2] μA<br>(1.2 to 12] μA<br>(12 to 120] μA<br>(0.12 to 1.2] mA<br>(1.2 to 12] mA<br>(12 to 120] mA                                      | $\frac{-4.44 \text{ pA}}{\sqrt{\left(23.1\frac{\mu\text{A}}{\text{A}}\cdot\text{OR}\right)^{2} + \left(411\text{pA}\right)^{2} + 80.5\text{fA}}}$ $\sqrt{\left(23.1\frac{\mu\text{A}}{\text{A}}\cdot\text{OR}\right)^{2} + \left(4.11\text{nA}\right)^{2}} - 406\text{fA}}$ $\sqrt{\left(23.1\frac{\mu\text{A}}{\text{A}}\cdot\text{OR}\right)^{2} + \left(14.0\text{nA}\right)^{2}} + 33.4\text{pA}}$ $\sqrt{\left(23.1\frac{\mu\text{A}}{\text{A}}\cdot\text{OR}\right)^{2} + \left(591\text{nA}\right)^{2}} + 460\text{pA}}$ $\sqrt{\left(23.1\frac{\mu\text{A}}{\text{A}}\cdot\text{OR}\right)^{2} + \left(591\text{nA}\right)^{2}} + 658\text{pA}}$ $\sqrt{\left(40.5\frac{\mu\text{A}}{\text{A}}\cdot\text{OR}\right)^{2} + \left(6.01\mu\text{A}\right)^{2}} + 4.38\text{nA}}$ | DMM<br>HP 3458A                                                         |
| DC Current Sources <sup>1,2</sup>                | (0.12 to 1.05] A<br>(1.05 to 20] A                                                                                                                | $\sqrt{\left(127 \frac{\mu A}{A} \cdot OR\right)^2 + \left(141 \mu A\right)^2} + 8.1 \mu A$ $230 \ \mu A/A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Shunt:<br>FLUKE A40A-20A                                                |
| DC Current Sources <sup>1,2</sup>                | (20 to 1 000] A                                                                                                                                   | 8 mA/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Calibrator, FLUKE 5520A<br>+DC Clamp meter used as<br>Transfer Standard |
| AC Voltage, Measuring Instruments <sup>1,2</sup> | [0.1 to 1.9] mV<br>[10 to 31] Hz<br>(31 to 330] Hz<br>(0.33 to 10] kHz<br>(10 to 33] kHz<br>(33 to 100] kHz<br>(100 to 330] kHz<br>(033 to 1] MHz | $\sqrt{\frac{139 \frac{\mu V}{V} \cdot OR}{V}^{2} + (6.26 \mu V)^{2}} + 244 \text{ nV}$ $\sqrt{\frac{81 \frac{\mu V}{V} \cdot OR}{V}^{2} + (6.26 \mu V)^{2}} + 137 \text{ nV}$ $\sqrt{\frac{69.4 \frac{\mu V}{V} \cdot OR}{V}^{2} + (6.26 \mu V)^{2}} + 124 \text{ nV}$ $\sqrt{\frac{81 \frac{\mu V}{V} \cdot OR}{V}^{2} + (6.30 \mu V)^{2}} + 143 \text{ nV}$ $\sqrt{\frac{347 \frac{\mu V}{V} \cdot OR}{V}^{2} + (6.39 \mu V)^{2}} + 578 \text{ nV}$ $\sqrt{(0.12 \% \cdot OR)^{2} + (12.0 \mu V)^{2}} + 1.95 \mu V$ $\sqrt{(0.23 \% \cdot OR)^{2} + (24.3 \mu V)^{2}} + 3.96 \mu V$                                                                                                                                                                                                | IEC 60051-9; IEC 60044<br>Calibrator Datron 4709                        |





| Parameter/Equipment                                 | Range 5 [including end point] (does not include end point) | Expanded Uncertainty of<br>Measurement (+/-)                                                   | Reference Standard,<br>Method, and/or<br>Equipment |
|-----------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------|
|                                                     | (1.9 to 19] mV                                             | 2                                                                                              |                                                    |
|                                                     | [10 to 31] Hz                                              | $\sqrt{\left(139 \frac{\mu V}{V} \cdot OR\right)^2 + \left(7.18 \mu V\right)^2} + 1.91 \mu V$  |                                                    |
|                                                     | (31 to 330] Hz                                             | $\sqrt{\left(81\frac{\mu V}{V}\cdot OR\right)^2 + \left(7.09\mu V\right)^2 + 1.22\mu V}$       |                                                    |
| AC Voltage,                                         | (0.33 to 10] kHz                                           | $\sqrt{\left(69.4 \frac{\mu V}{V} \cdot OR\right)^2 + \left(7.18 \mu V\right)^2 + 1.05 \mu V}$ | IEC 60051-9; IEC 60044                             |
| Measuring Instruments <sup>1,2</sup>                | (10 to 33] kHz                                             | $\sqrt{\left(81\frac{\mu V}{V}\cdot OR\right)^2 + \left(7.63\mu V\right)^2} + 1.15\mu V$       | Calibrator Datron 4709                             |
|                                                     | (33 to 100] kHz                                            | $\sqrt{\left(347 \frac{\mu V}{V} \cdot OR\right)^2 + \left(8.70 \mu V\right)^2} + 3.27 \mu V$  |                                                    |
|                                                     | (100 to 330] kHz                                           | $\sqrt{(0.12 \% \cdot \text{OR})^2 + (14.9 \mu\text{V})^2} + 8.99 \mu\text{V}$                 |                                                    |
|                                                     | (0.33 to 1] MHz                                            | $\sqrt{(0.23\% \cdot OR)^2 + (36.2 \mu\text{V})^2} + 22.1 \mu\text{V}$                         |                                                    |
|                                                     | [19 to 190] mV                                             |                                                                                                |                                                    |
|                                                     | [10 to 31] Hz                                              | $\sqrt{\left(139 \frac{\mu V}{V} \cdot OR\right)^2 + \left(17.3 \mu V\right)^2} + 7.58 \mu V$  |                                                    |
|                                                     | (31 to 330] Hz                                             | $\sqrt{\left(81\frac{\mu V}{V} \cdot OR\right)^2 + \left(15.1\mu V\right)^2 + 6.33\mu V}$      |                                                    |
| AC Voltage,<br>Measuring Instruments <sup>1,2</sup> | (0.33 to 10] kHz                                           | $\sqrt{\left(69.4 \frac{\mu V}{V} \cdot OR\right)^2 + \left(16.1 \mu V\right)^2} + 5.71 \mu V$ | IEC 60051-9; IEC 60044                             |
|                                                     | (10 to 33] kHz                                             | $\sqrt{\left(81\frac{\mu V}{V}\cdot OR\right)^2 + \left(23.5\mu V\right)^2} + 5.10\mu V$       | Calibrator Datron 4709                             |
|                                                     | (33 to 100] kHz                                            | $\sqrt{\left(347 \frac{\mu V}{V} \cdot OR\right)^2 + \left(39.3 \mu V\right)^2} + 8.32 \mu V$  |                                                    |
|                                                     | (100 to 330] kHz                                           | $\sqrt{(0.12 \% \cdot OR)^2 + (65.1 \mu V)^2} + 20.7 \mu V$                                    |                                                    |
|                                                     | (0.33 to 1] MHz                                            | $\sqrt{(0.23\%\cdot OR)^2 + (167\mu V)^2} + 111\mu V$                                          |                                                    |





| Parameter/Equipment                              | Range 5 [including end point] (does not include end point)                                                                                  | Expanded Uncertainty of Measurement (+/-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Reference Standard,<br>Method, and/or<br>Equipment |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| AC Voltage, Measuring Instruments <sup>1,2</sup> | (190 mV to 1.90 V]  [10 to 31] Hz  (31 to 330] Hz  (0.33 to 33] kHz  (33 to 100] kHz  (100 to 330] kHz  (0.33 to 1] MHz                     | $ \sqrt{\left(104 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(50.4 \mu V\right)^{2}} + 29.7 \mu V $ $ \sqrt{\left(57.9 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(34.1 \mu V\right)^{2}} + 19.3 \mu V $ $ \sqrt{\left(46.3 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(28.3 \mu V\right)^{2}} + 9.92 \mu V $ $ \sqrt{\left(92.6 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(52.0 \mu V\right)^{2}} + 20.0 \mu V $ $ \sqrt{\left(289 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(162 \mu V\right)^{2}} + 97.4 \mu V $ $ \sqrt{\left(0.17 \% \cdot OR\right)^{2} + \left(738 \mu V\right)^{2}} + 405 \mu V $                                                                                                                                                                                        | IEC 60051-9; IEC 60044<br>Calibrator Datron 4709   |
| AC Voltage, Measuring Instruments <sup>1,2</sup> | (1.9 to 19] V [10 to 31] Hz (31 to 330] Hz (0.33 to 10] kHz (10 to 33] kHz (33 to 100] kHz (33 to 100] kHz (100 to 330] kHz (0.33 to 1] MHz | $ \sqrt{\left(104 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(504 \mu V\right)^{2}} + 297 \mu V $ $ \sqrt{\left(57.9 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(341 \mu V\right)^{2}} + 193 \mu V $ $ \sqrt{\left(46.3 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(283 \mu V\right)^{2}} + 992 \mu V $ $ \sqrt{\left(46.3 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(301 \mu V\right)^{2}} + 988 \mu V $ $ \sqrt{\left(92.6 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(457 \mu V\right)^{2}} + 202 \mu V $ $ \sqrt{\left(92.6 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(457 \mu V\right)^{2}} + 202 \mu V $ $ \sqrt{\left(289 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(1.55 mV\right)^{2}} + 976 \mu V $ $ \sqrt{\left(0.17 \% \cdot OR\right)^{2} + \left(7.14 mV\right)^{2}} + 4.05 mV $ | IEC 60051-9; IEC 60044<br>Calibrator Datron 4709   |





| Parameter/Equipment                                 | Range 5 [including end point] (does not include end point)                                                       | Expanded Uncertainty of<br>Measurement (+/-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Reference Standard,<br>Method, and/or<br>Equipment                    |
|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| AC Voltage, Measuring Instruments 1,2               | (19 to 190] V [10 to 31] Hz (31 to 330] Hz (0.33 to 10] kHz (10 to 33] kHz (33 to 100] kHz (100 to 200] kHz      | $\sqrt{\left(116 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(5.35 \text{ mV}\right)^{2}} + 3.01 \text{ mV}$ $\sqrt{\left(69.4 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(3.57 \text{ mV}\right)^{2}} + 1.99 \text{ mV}$ $\sqrt{\left(57.9 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(3.01 \text{ mV}\right)^{2}} + 1.0 \text{ mV}$ $\sqrt{\left(69.4 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(3.81 \text{ mV}\right)^{2}} + 1.98 \text{ mV}$ $\sqrt{\left(139 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(7.84 \text{ mV}\right)^{2}} + 3.00 \text{ mV}$ $\sqrt{\left(463 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(26.8 \text{ mV}\right)^{2}} + 9.97 \text{ mV}$ | IEC 60051-9; IEC 60044<br>Calibrator Datron 4709                      |
| AC Voltage, Measuring Instruments 1,2               | (190 to 1 000] V<br>[50 to 330] Hz<br>(0.33 to 10] kHz<br>(10 to 33] kHz<br>(33 to 100] kHz                      | $\sqrt{\left(162 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(41.7 \text{ mV}\right)^{2}} + 10.9 \text{ mV}$ $\sqrt{\left(116 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(45.6 \text{ mV}\right)^{2}} + 10.4 \text{ mV}$ $\sqrt{\left(162 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(76.1 \text{ mV}\right)^{2}} + 10.2 \text{ mV}$ $\sqrt{\left(0.12 \% \cdot OR\right)^{2} + \left(350 \text{ mV}\right)^{2}} + 21.8 \text{ mV}$                                                                                                                                                                                                                                        | IEC 60051-9; IEC 60044<br>Calibrator Datron 4709                      |
| AC Voltage,<br>Measuring Instruments <sup>1,2</sup> | (1 to 1.5) kV<br>[40 to 60] Hz                                                                                   | $\sqrt{\left(810 \frac{\mu V}{V} \cdot OR\right)^2 + \left(2.1 V\right)^2} + 7.54 V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Potential Transformer<br>TETTEX 7823, Precision<br>High Voltage Meter |
| AC Voltage, Measuring Instruments 1,2               | (1.5 to 10] kV<br>[40 to 60] Hz                                                                                  | $\sqrt{(0.23\% \cdot \text{OR})^2 + (23.0 \text{ V})^2} + 10.6 \text{ V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | VITREK 4600A High<br>Voltage Meter                                    |
| AC Voltage,<br>Sources <sup>1,2</sup>               | [1 to 3] mV<br>[10 to 100] Hz<br>(100 Hz to 30 kHz]<br>(30 to 200] kHz<br>(200 to 500] kHz<br>(500 to 1 000] kHz | $ \sqrt{(0.15\% \cdot OR)^2 + (1.06 \mu V)^2} + 38.5 \text{ nV} $ $ \sqrt{(0.13\% \cdot OR)^2 + (1.06 \mu V)^2} + 37.1 \text{ nV} $ $ \sqrt{(0.19\% \cdot OR)^2 + (1.11 \mu V)^2} - 8.6 \text{ nV} $ $ \sqrt{(0.36\% \cdot OR)^2 + (1.11 \mu V)^2} + 45.4 \text{ nV} $ $ \sqrt{(0.75\% \cdot OR)^2 + (1.31 \mu V)^2} + 50.0 \text{ nV} $                                                                                                                                                                                                                                                                                                                                  | AC Measurement,<br>Standard, Datron 4920                              |





| Parameter/Equipment                   | Range 5 [including end point] (does not include end point) | Expanded Uncertainty of Measurement (+/-)                                                                                 | Reference Standard,<br>Method, and/or<br>Equipment |
|---------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
|                                       | (3 to 10] mV                                               |                                                                                                                           |                                                    |
|                                       | [10 to 100] Hz                                             | $\sqrt{\left(509 \frac{\mu V}{V} \cdot OR\right)^2 + \left(1.12 \mu V\right)^2} - 10.9 nV$                                |                                                    |
| ACV I                                 | (100 Hz to 30 kHz]                                         | $\sqrt{\left(312 \frac{\mu V}{V} \cdot OR\right)^2 + \left(1.12 \mu V\right)^2} - 16.5 \text{ nV}$                        | ACM                                                |
| AC Voltage,<br>Sources <sup>1,2</sup> | (30 to 200] kHz                                            | $\sqrt{\left(729\frac{\mu V}{V}\cdot OR\right)^{2} + \left(1.56\mu V\right)^{2}} - 641 pV$                                | AC Measurement,<br>Standard, Datron 4920           |
|                                       | (200 to 500] kHz                                           | $\sqrt{\left(2.1 \frac{\text{mV}}{\text{V}} \cdot \text{OR}\right)^2 + \left(1.56 \mu\text{V}\right)^2} + 49.8 \text{nV}$ |                                                    |
|                                       | (500 kHz to 1 MHz]                                         | $\sqrt{\left(5.2 \frac{\text{mV}}{\text{V}} \cdot \text{OR}\right)^2 + \left(3.00 \mu\text{V}\right)^2} + 50.4 \text{nV}$ |                                                    |
|                                       | (10 to 30] mV                                              | A A                                                                                                                       |                                                    |
|                                       | [10 to 100] Hz                                             | $\sqrt{\left(405\frac{\mu V}{V}\cdot OR\right)^2 + \left(1.16\mu V\right)^2} + 45.1\text{nV}$                             |                                                    |
|                                       | (100 Hz to 30 kHz]                                         | $\sqrt{\left(243 \frac{\mu V}{V} \cdot OR\right)^2 + \left(1.16 \mu V\right)^2} + 41.1  nV$                               |                                                    |
| AC Voltage,<br>Sources <sup>1,2</sup> | (30 to 200] kHz                                            |                                                                                                                           | AC Measurement,<br>Standard, Datron 4920           |
| Sources                               | (200 to 500] kHz                                           | $\sqrt{\left(521\frac{\mu V}{V}\cdot OR\right)^2 + \left(1.52\mu V\right)^2} + 50.7\text{nV}$                             | Standard, Darron 4920                              |
|                                       | (500 to 1 000] kHz                                         | $\sqrt{\left(1.6\frac{\text{mV}}{\text{V}}\cdot\text{OR}\right)^2+\left(2.94\mu\text{V}\right)^2}+51.4\text{nV}$          |                                                    |
|                                       |                                                            | $\sqrt{\left(3.9 \frac{\text{mV}}{\text{V}} \cdot \text{OR}\right)^2 + \left(8.54 \mu\text{V}\right)^2} + 50.5 \text{nV}$ |                                                    |
|                                       | (30 to 100] mV                                             |                                                                                                                           |                                                    |
|                                       | [10 to 100] Hz                                             | $\sqrt{\left(301\frac{\mu V}{V} \cdot OR\right)^2 + \left(1.89\mu V\right)^2 + 52.2nV}$                                   |                                                    |
| AC Voltage,<br>Sources <sup>1,2</sup> | (100 Hz to 30 kHz]                                         | $\sqrt{\left(150 \frac{\mu V}{V} \cdot OR\right)^2 + \left(1.89 \mu V\right)^2} + 46.2 \text{ nV}$                        |                                                    |
|                                       | (30 to 200] kHz                                            | $\sqrt{\left(289 \frac{\mu V}{V} \cdot OR\right)^2 + \left(3.94 \mu V\right)^2} + 4.51  nV$                               | Standard, Datron 4920                              |
|                                       | (200 to 500] kHz                                           | $\sqrt{\left(868 \frac{\mu V}{V} \cdot OR\right)^2 + \left(9.28 \mu V\right)^2} + 53.6  \text{nV}$                        |                                                    |
|                                       | (500 to 1 000] kHz                                         | $\sqrt{\left(2.3 \frac{\text{mV}}{\text{V}} \cdot \text{OR}\right)^2 + \left(24.1 \mu\text{V}\right)^2} + 45.2 \text{nV}$ |                                                    |





| Parameter/Equipment                   | Range 5 [including end point] (does not include end point)                                                                | Expanded Uncertainty of Measurement (+/-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Reference Standard,<br>Method, and/or<br>Equipment |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| AC Voltage,<br>Sources <sup>1,2</sup> | (100 to 300] mV  [1 to 2] Hz  (2 to 10] Hz  (10 to 40] Hz  (40 Hz to 30 kHz]  (30 to 200] kHz  (200 to 500] kHz           | $\sqrt{\left(428 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(30.1 \mu V\right)^{2}} + 2.94 \text{ nV}$ $\sqrt{\left(197 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(10.5 \mu V\right)^{2}} - 8.65 \text{ nV}$ $\sqrt{\left(40.5 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(6.62 \mu V\right)^{2}} + 404 \text{ pV}$ $\sqrt{\left(40.5 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(11.1 \mu V\right)^{2}} + 19.6 \text{ nV}$ $\sqrt{\left(98.4 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(35.8 \mu V\right)^{2}} - 17.1 \text{ nV}$ $\sqrt{\left(405 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(35.8 \mu V\right)^{2}} - 8.85 \text{ nV}$ $\sqrt{\left(1.1 \frac{mV}{V} \cdot OR\right)^{2} + \left(84.8 \mu V\right)^{2}} + 4.59 \text{ nV}$     | Standard, Datron 4920                              |
| AC Voltage,<br>Sources <sup>1,2</sup> | (0.3 to 1] V [1 to 2] Hz (2 to 10] Hz (10 to 40] Hz (40 Hz to 30 kHz] (30 to 200] kHz (200 to 500] kHz (500 to 1 000] kHz | $ \sqrt{\left(428 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(50.1 \mu V\right)^{2}} + 86.3 \text{ nV} $ $ \sqrt{\left(197 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(27.1 \mu V\right)^{2}} + 3.80 \text{ nV} $ $ \sqrt{\left(40.5 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(16.1 \mu V\right)^{2}} - 3.61 \text{ nV} $ $ \sqrt{\left(40.5 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(18.1 \mu V\right)^{2}} - 4.48 \text{ nV} $ $ \sqrt{\left(98.4 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(41.1 \mu V\right)^{2}} - 17.4 \text{ nV} $ $ \sqrt{\left(405 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(118 \mu V\right)^{2}} + 64.4 \text{ nV} $ $ \sqrt{\left(0.11 \% \cdot OR\right)^{2} + \left(283 \mu V\right)^{2}} - 67.4 \text{ nV} $ | Standard, Datron 4920                              |





Version 013 Issued: June 14, 2024

| Parameter/Equipment                   | Range 5 [including end point] (does not include end point)                                                                      | Expanded Uncertainty of Measurement (+/-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Reference Standard,<br>Method, and/or<br>Equipment |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| AC Voltage,<br>Sources 1,2            | (1 to 3] V [1 to 2] Hz (2 to 10] Hz (10 to 40] Hz (40 Hz to 30 kHz] (30 to 200] kHz (200 to 500] kHz (500 to 1 000] kHz         | $ \sqrt{\left(428 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(160 \mu V\right)^{2}} + 196 \text{ nV} $ $ \sqrt{\left(197 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(81.2 \mu V\right)^{2}} - 81.7 \text{ nV} $ $ \sqrt{\left(40.5 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(42.1 \mu V\right)^{2}} + 27.5 \text{ nV} $ $ \sqrt{\left(40.5 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(48.1 \mu V\right)^{2}} + 32.1 \text{ nV} $ $ \sqrt{\left(98.4 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(114 \mu V\right)^{2}} + 35.6 \text{ nV} $ $ \sqrt{\left(405 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(277 \mu V\right)^{2}} - 121 \text{ nV} $ $ \sqrt{\left(1.1 \frac{mV}{V} \cdot OR\right)^{2} + \left(722 \mu V\right)^{2}} - 15.3 \text{ nV} $  | Standard, Datron 4920                              |
| AC Voltage,<br>Sources <sup>1,2</sup> | (3 to 10] V  [1 to 2] Hz  (2 to 10] Hz  (10 to 40] Hz  (40 Hz to 30 kHz]  (30 to 200] kHz  (200 to 500] kHz  (500 to 1 000] kHz | $\sqrt{\left(428 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(53.1 \mu V\right)^{2}} + 835 \text{ nV}$ $\sqrt{\left(197 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(271 \mu V\right)^{2}} + 38.0 \text{ nV}$ $\sqrt{\left(40.5 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(141 \mu V\right)^{2}} - 22.6 \text{ nV}$ $\sqrt{\left(40.5 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(161 \mu V\right)^{2}} - 36.1 \text{ nV}$ $\sqrt{\left(98.4 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(381 \mu V\right)^{2}} - 199 \text{ nV}$ $\sqrt{\left(405 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(922 \mu V\right)^{2}} - 95.7 \text{ nV}$ $\sqrt{\left(1.1 \frac{mV}{V} \cdot OR\right)^{2} + \left(2.83 mV\right)^{2}} - 674 \text{ nV}$                     | Standard, Datron 4920                              |
| AC Voltage,<br>Sources <sup>1,2</sup> | (10 to 30] V [1 to 2] Hz (2 to 10] Hz (10 to 40] Hz (40 Hz to 30 kHz] (30 to 200] kHz (200 to 500] kHz (500 to 1 000] kHz       | $\sqrt{\left(428 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(1.60 \text{ mV}\right)^{2}} + 1.96 \mu V$ $\sqrt{\left(197 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(812 \mu V\right)^{2}} - 817 \text{ nV}$ $\sqrt{\left(40.5 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(812 \mu V\right)^{2}} + 184 \text{ nV}$ $\sqrt{\left(40.5 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(481 \mu V\right)^{2}} + 321 \text{ nV}$ $\sqrt{\left(98.4 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(1.14 \text{ mV}\right)^{2}} + 356 \text{ nV}$ $\sqrt{\left(405 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(2.77 \text{ mV}\right)^{2}} - 1.21 \mu V$ $\sqrt{\left(1.1 \frac{\text{mV}}{V} \cdot OR\right)^{2} + \left(7.22 \text{ mV}\right)^{2}} - 153 \text{ nV}$ | Standard, Datron 4920                              |

www.anab.org





| Electrical – DC/Low Freq              | Electrical – DC/Low Frequency                                         |                                                                                                                                                                                                                         |                                                    |  |
|---------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--|
| Parameter/Equipment                   | Range <sup>5</sup> [including end point] (does not include end point) | Expanded Uncertainty of Measurement (+/-)                                                                                                                                                                               | Reference Standard,<br>Method, and/or<br>Equipment |  |
|                                       | (30 to 100] V                                                         |                                                                                                                                                                                                                         |                                                    |  |
|                                       | [1 to 2] Hz                                                           | $\sqrt{\left(428 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(5.81 \text{mV}\right)^{2}} + 8.90 \mu\text{V}$ $\sqrt{\left(197 \frac{\mu V}{V} \cdot OR\right)^{2} + \left(2.91 \text{mV}\right)^{2}} - 4.58 \mu\text{V}$ |                                                    |  |
| AC Voltage,                           | (2 to 10] Hz                                                          | $\sqrt{\frac{197 \frac{\mu V}{V} \cdot OR}{V} \cdot OR} + \frac{(2.91 \text{ mV})}{-4.58 \mu V} - \frac{-4.58 \mu V}{-4.58 \mu V}$                                                                                      | Standard, Datron 4920                              |  |
| Sources 1,2                           | (10 to 40] Hz                                                         | $\sqrt{\left(40.5 \frac{\mu V}{V} \cdot OR\right)^2 + \left(1.61 \text{mV}\right)^2} - 361 \text{nV}$                                                                                                                   | Standard, Dation 4920                              |  |
|                                       | (40 Hz to 30 kHz]                                                     | $\sqrt{\frac{40.5 \frac{\mu V}{V} \cdot OR}{98.4 \frac{\mu V}{V} \cdot OR}^2 + (5.01 \text{ mV})^2} - 765 \text{ nV}$                                                                                                   |                                                    |  |
|                                       | (30 to 200] kHz                                                       |                                                                                                                                                                                                                         |                                                    |  |
|                                       | (100 to 300] V                                                        | $\sqrt{\left(475 \frac{\mu V}{V} \cdot OR\right)^2 + \left(69.2 \text{ mV}\right)^2} - 9.38 \mu\text{V}$                                                                                                                |                                                    |  |
|                                       | [1 to 2] Hz                                                           | $\sqrt{\left(243 \frac{\mu V}{V} \cdot OR\right)^2 + \left(10.0 \text{ mV}\right)^2} - 6.20 \mu\text{V}$                                                                                                                |                                                    |  |
| AC Voltage,<br>Sources <sup>1,2</sup> | (2 to 10] Hz                                                          | $\sqrt{\left(57.9 \frac{\mu V}{V} \cdot OR\right)^2 + \left(6.92 \text{ mV}\right)^2} - 9.72 \mu\text{V}$                                                                                                               | Standard, Datron 4920                              |  |
| Sources                               | (10 to 40] Hz                                                         | $\sqrt{\left(57.9 \frac{\mu \text{V}}{\text{V}} \cdot \text{OR}\right)^2 + \left(7.22 \text{ mV}\right)^2} - 9.46 \mu\text{V}$                                                                                          |                                                    |  |
|                                       | (40 Hz to 20 kHz]                                                     | $\sqrt{\left(151\frac{\mu V}{V}\cdot OR\right)^2 + \left(39.7\text{mV}\right)^2} - 14.0\mu\text{V}$                                                                                                                     |                                                    |  |
|                                       | (20 to 100] kHz                                                       | $\sqrt{\left(151\frac{1}{V}, \text{OK}\right)^{2} + \left(35.7 \text{ mV}\right)^{2} - 14.0 \mu\text{V}}$                                                                                                               |                                                    |  |
|                                       | (300 to 1 000] V                                                      | $($ $$ $)^2$ $2$                                                                                                                                                                                                        |                                                    |  |
|                                       | [1 to 2] Hz                                                           | $\sqrt{\left(475\frac{\mu V}{V}\cdot OR\right)^2 + \left(301\text{mV}\right)^2} - 136\mu\text{V}$                                                                                                                       |                                                    |  |
| AC Voltage,                           | (2 to 10] Hz                                                          | $\sqrt{\left(243\frac{\mu V}{V}\cdot OR\right)^2 + \left(27.1\text{mV}\right)^2} - 326\text{nV}$                                                                                                                        | Standard, Datron 4920                              |  |
| Sources <sup>1,2</sup>                | (10 to 40] Hz                                                         | $\sqrt{\left(57.9 \frac{\mu V}{V} \cdot OR\right)^2 + \left(27.1 \text{ mV}\right)^2} - 35.6 \mu\text{V}$                                                                                                               | Standard, Darron 4720                              |  |
|                                       | (40 Hz to 20 kHz]                                                     | $\sqrt{\left(57.9 \frac{\mu V}{V} \cdot OR\right)^2 + \left(52.1 \text{ mV}\right)^2} - 2.22 \mu\text{V}$                                                                                                               |                                                    |  |
|                                       | (20 to 100] kHz                                                       | $\sqrt{\left(151\frac{\mu V}{V}\cdot OR\right)^2 + \left(132 \text{ mV}\right)^2} + 175 \mu V$                                                                                                                          |                                                    |  |
| AC Voltage,<br>Sources <sup>1,2</sup> | (1 000 to 1 500] V                                                    |                                                                                                                                                                                                                         |                                                    |  |
|                                       | [50 to 60] Hz                                                         | $\sqrt{\left(810 \frac{\mu V}{V} \cdot OR\right)^2 + \left(2.10 \text{ V}\right)^2} + 754 \text{ mV}$                                                                                                                   | Precision High Voltage                             |  |
|                                       | (1.5 to 15] kV                                                        | ( ) 2 · · ·                                                                                                                                                                                                             | Meter VITREK 4700A                                 |  |
|                                       | [50 to 60] Hz                                                         | $\sqrt{\left(2.3\frac{\text{mV}}{\text{V}}\cdot\text{OR}\right)^2+\left(23\text{V}\right)^2+12.6\text{V}}$                                                                                                              |                                                    |  |
| AC Voltage,<br>Sources <sup>1,2</sup> | (15 to 28] kV<br>[50 to 60] Hz                                        | 58 V/kV                                                                                                                                                                                                                 | High Voltage Probe<br>FLUKE 80K-40                 |  |



| Electrical – DC/Low Freq          |                                                            |                                                                                                                                    | T = 2 = -                                          |
|-----------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Parameter/Equipment               | Range 5 [including end point] (does not include end point) | Expanded Uncertainty of Measurement (+/-)                                                                                          | Reference Standard,<br>Method, and/or<br>Equipment |
|                                   | (0 to 190] μA                                              |                                                                                                                                    |                                                    |
| AC Current, Measuring Instruments | (0.01 to 1] kHz                                            | $\sqrt{(174 \frac{\mu A}{A} OR)^2 + (17nA)^2} + 3.1nA$                                                                             | IEC 60051-9; IEC 60044<br>Calibrator DATRON 4708   |
|                                   | (1 to 5] kHz                                               | $\sqrt{(347 \frac{\mu A}{A} OR)^2 + (22nA)^2} + 2.6nA$                                                                             |                                                    |
|                                   | (0 to 330] μA                                              | V A                                                                                                                                |                                                    |
| AC Current, Measuring Instruments | (0.01 to 10] kHz                                           | $\sqrt{(0.93\%OR)^2 + 239nA^2} - 22nA$                                                                                             | Calibrator FLUKE 5520A                             |
|                                   | (10 to 30] kHz                                             | $\sqrt{(1.85\%OR)^2 + 467nA^2} - 435nA$                                                                                            |                                                    |
|                                   | (0.33 to 3.3] mA                                           | <b>V</b> (,                                                                                                                        |                                                    |
| AC Current, Measuring Instruments | (0.01 to 10] kHz                                           | $\sqrt{(0.85\%OR)^2 + 688\mu A^2} - 2.3\mu A$                                                                                      | Calibrator FLUKE 5520A                             |
|                                   | (10 to 30] kHz                                             | $\sqrt{(1.16\%OR)^2 + 91.3\mu A^2} - 4.5\mu A$                                                                                     |                                                    |
|                                   | (1.9 to 19 mA]                                             |                                                                                                                                    |                                                    |
| AC Current,                       |                                                            | $\sqrt{(0.02\%OR)^2 + 1.7\mu A^2} + 2.2\mu A$                                                                                      | Calibrator DATRON 4708                             |
| Measuring Instruments             | (0.01 to 1] kHz                                            |                                                                                                                                    | Calibrator DATKON 4708                             |
| Tyreasaring mentanients           | (1 to 5] kHz                                               | $\sqrt{(116\frac{\mu A}{A}OR)^2 + (16nA)^2} + 15nA$                                                                                |                                                    |
|                                   | (3.3 to 33 mA)                                             |                                                                                                                                    |                                                    |
| AC Current, Measuring Instruments | (0.01 to 10] kHz                                           | $\sqrt{(0.23\%OR)^2 + 6.9\mu A^2} - 7.3\mu A$                                                                                      | Calibrator FLUKE 5520A                             |
|                                   | (10 to 201 kHz                                             | $\sqrt{(0.46\%OR)^2 + 7.5\mu A^2} - 16.5\mu A$                                                                                     |                                                    |
|                                   | (10 to 30] kHz<br>(19 to 190 mA]                           | γ(ο.107,001) 17.3μ21 10.3μ21                                                                                                       |                                                    |
| AC Current, Measuring Instruments | (0.01 to 1] kHz                                            | $\sqrt{(116\frac{\mu A}{A}OR)^2 + (16nA)^2} + 3.6nA$                                                                               | Calibrator DATRON 47                               |
| <i>S</i>                          | (1 to 5] kHz                                               | $\sqrt{(232 \frac{\mu A}{A} OR)^2 + (17nA)^2 + 2.2nA}$                                                                             |                                                    |
|                                   | (33 to 330 mA)                                             | ——————————————————————————————————————                                                                                             |                                                    |
| AC Current, Measuring Instruments | (0.01 to 10] kHz                                           | $\sqrt{(0.23\frac{\mu A}{A}OR)^2 + (130nA)^2} + 12nA$                                                                              | Calibrator FLUKE 5520A                             |
|                                   | (10 to 30] kHz                                             | $\sqrt{(0.46\%OR)^2 + 239\mu A^2 - 22\mu A}$                                                                                       |                                                    |
|                                   | (0.5 to 1] A                                               |                                                                                                                                    |                                                    |
| AC Current, Measuring Instruments | [44 to 65] Hz                                              | $\sqrt{(151 \frac{\mu A}{A} OR)^{2} + (38.1 \mu A)^{2} + 1.3 \mu A}$ $\sqrt{(161 \frac{\mu A}{A} OR)^{2} + (38.8 nA)^{2} + 97 nA}$ | Calibrator FLUKE 6100B                             |
|                                   | (65 to 850] Hz                                             | 1 -3                                                                                                                               |                                                    |





| Electrical – DC/Low Freq          | Range <sup>5</sup>                                 | Expanded Uncertainty of                                       | Reference Standard,         |
|-----------------------------------|----------------------------------------------------|---------------------------------------------------------------|-----------------------------|
| Parameter/Equipment               | [including end point] (does not include end point) | Magguramant (+/)                                              | Method, and/or<br>Equipment |
|                                   | (1.1to 1.9] A                                      |                                                               |                             |
| AC Current, Measuring Instruments | (0.85 to 1] kHz                                    | $\sqrt{(347\frac{\mu A}{A}OR)^2 + (203\mu A)^2 - 2.2\mu A}$   | Calibrator DATRON 47<br>08  |
| - Troubland Inches                | (1 to 5] kHz<br>(1.9 to 2] A                       | $\sqrt{(521\frac{\mu A}{A}OR)^2 + (271\mu A)^2} - 11\mu A$    |                             |
| AC Current,                       | [1.9 to 2] A<br>[44 to 65] Hz                      | $\sqrt{(151\frac{\mu A}{A}OR)^2 + (76.2\mu A)^2} + 2.6\mu A$  | C 17 . FI LIVE (100D        |
| Measuring Instruments             | (65 to 850] Hz                                     | $\sqrt{(161\frac{\mu A}{A}OR)^2 + (77.6\mu A)^2 + 19.6\mu A}$ | Calibrator FLUKE 6100B      |
|                                   | (2 to 3] A                                         |                                                               |                             |
| A.C.C.                            | [44 to 65] Hz                                      | $\sqrt{(161\frac{\mu A}{A}OR)^2 + (216\mu A)^2} + 34.3\mu A$  | Calibrator FLUKE 6100B      |
| AC Current, Measuring Instruments | (0.65 to 5] kHz                                    | $\sqrt{(0.12\%OR)^2 + 4.0mA^2 + 683\mu A}$                    | Calibrator FLUKE 5520A      |
|                                   | (5 to 10] kHz                                      | $\sqrt{(3.47\%OR)^2 + 4.0mA^2} - 12mA$                        | Calibrator FLUKE 5520A      |
| AC Current,                       | (3 to 5] A<br>[44 to 65] Hz                        | $\sqrt{(151\frac{\mu A}{A}OR)^2 + (21\mu A)^2} + 6.5\mu A$    | Calibrator FLUKE 6100B      |
| Measuring Instruments             | (65 to 850] Hz                                     | $\sqrt{(161\frac{\mu A}{A}OR)^2 + (22\mu A)^2} + 486nA$       |                             |
| AC Current,                       | (5 to 10] A<br>[44 to 65] Hz                       | $\sqrt{(190 \frac{\mu A}{A} OR)^2 + (43.2 mA)^2} - 33 \mu A$  |                             |
| Measuring Instruments             | (65 to 850] Hz                                     | $\sqrt{(221\frac{\mu A}{A}OR)^2 + (45.5mA)^2} - 73\mu A$      | Calibrator FLUKE 6100B      |
|                                   | (3 to 11] A                                        |                                                               |                             |
| ACC                               | (65 to 100] Hz                                     | $\sqrt{(0.07\%OR)^2 + 9mA^2} + 4.4mA$                         |                             |
| AC Current, Measuring Instruments | (0.85 to 1] kHz                                    | $\sqrt{(0.12\%OR)^2 + 9mA^2} + 750\mu A$                      | Calibrator FLUKE 5520A      |
|                                   | (1 to 5] kHz                                       | $\sqrt{(3.47\%OR)^2 + 9mA^2} - 4.9mA$                         |                             |
| AC Current, Measuring Instruments | (10 to 20] A<br>[44 to 850] Hz                     | $\sqrt{(247 \frac{\mu A}{A} OR)^2 + (1.2 mA)^2} - 8.2 \mu A$  | Calibrator FLUKE 6100B      |
|                                   | (11 to 20.5] A                                     |                                                               |                             |
| AC Current,                       | (0.1 to 1] kHz                                     | $\sqrt{(0.17\%OR)^2 + 17mA^2} - 21mA$                         | Calibrator FLUKE 5520A      |
| Measuring Instruments             | (1 to 5] kHz                                       | $\sqrt{(3.47\%OR)^2 + 17mA^2} - 9mA$                          |                             |
|                                   | (80 to 205] A                                      |                                                               |                             |
| AC Current,                       | (0.65 to 100] Hz                                   | $\sqrt{(0.16\%OR)^2 + 170mA^2} + 559mA$                       | Calibrator FLUKE 5520A      |
| Measuring Instruments             | (100 to 440] Hz                                    | $\sqrt{(3.47\%OR)^2 + 170mA^2} - 903mA$                       |                             |
| AC Current, Measuring Instruments | (205 to 1000] A<br>(0.65 to 100] Hz                | $\sqrt{(0.16\%OR)^2 + 852mA^2} + 7.2mA$                       | Calibrator FLUKE 5520A      |



| Parameter/Equipment                   | Range 5 [including end point] (does not include end point)                                                                                    | Expanded Uncertainty of Measurement (+/-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Reference Standard,<br>Method, and/or<br>Equipment |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| AC Current,<br>Sources <sup>1,2</sup> | (0 to 120] μA<br>(10 to 20] Hz<br>(20 to 45] Hz<br>(45 to 1 000] Hz<br>(120 μA to 1.2 mA]                                                     | $\sqrt{(0.46\% \cdot \text{OR})^2 + (31 \text{ nA})^2} + 44 \text{ pA}$ $\sqrt{(0.17\% \cdot \text{OR})^2 + (42 \text{ nA})^2} + 26 \text{ nA}$ $\sqrt{(694 \frac{\mu \text{A}}{\text{A}} \cdot \text{OR})^2 + (42 \text{ nA})^2} + 22 \text{ nA}$                                                                                                                                                                                                                                                               | DMM HP 3458A                                       |
| AC Current,<br>Sources <sup>1,2</sup> | (10 to 20] Hz<br>(20 to 45] Hz<br>(45 to 100] Hz<br>(100 Hz to 5 kHz]<br>(5 to 20] kHz<br>(20 to 50] kHz<br>(50 to 100] kHz                   | $\sqrt{(0.46\% \cdot OR)^2 + (381 \text{ nA})^2} + 271 \text{ nA}$ $\sqrt{(0.17\% \cdot OR)^2 + (381 \text{ nA})^2} + 258 \text{ nA}$ $\sqrt{(694 \frac{\mu A}{A} \cdot OR)^2 + (381 \text{ nA})^2} + 225 \text{ nA}$ $\sqrt{(347 \frac{\mu A}{A} \cdot OR)^2 + (371 \text{ nA})^2} + 13 \text{ pA}$ $\sqrt{(694 \frac{\mu A}{A} \cdot OR)^2 + (521 \text{ nA})^2} + 196 \text{ pA}$ $\sqrt{(0.46\% \cdot OR)^2 + (1.3 \mu A)^2} + 642 \text{ pA}$ $\sqrt{(0.64\% \cdot OR)^2 + (5.4 \mu A)^2} + 1.5 \text{ nA}$ | DMM HP 3458A                                       |
| AC Current, Sources 1,2               | (1.2 to 12] mA<br>(10 to 20] Hz<br>(20 to 45] Hz<br>(45 to 100] Hz<br>(100 Hz to 5 kHz]<br>(5 to 20] kHz<br>(20 to 50] kHz<br>(50 to 100] kHz | $ \sqrt{(0.46\% \cdot OR)^2 + (3.8 \mu A)^2} + 2.7 \mu A $ $ \sqrt{(0.17\% \cdot OR)^2 + (3.8 \mu A)^2} + 2.6 \mu A $ $ \sqrt{(694 \frac{\mu A}{A} \cdot OR)^2 + (3.8 \mu A)^2} + 2.3 \mu A $ $ \sqrt{(347 \frac{\mu A}{A} \cdot OR)^2 + (3.7 \mu A)^2} + 126 p A $ $ \sqrt{(694 \frac{\mu A}{A} \cdot OR)^2 + (5.2 \mu A)^2} + 2.0 n A $ $ \sqrt{(0.46\% \cdot OR)^2 + (14 \mu A)^2} + 5.1 \mu A $ $ \sqrt{(0.64\% \cdot OR)^2 + (58 \mu A)^2} + 15 \mu A $                                                     | DMM HP 3458A                                       |
| AC Current, Sources 1,2               | (12 to 120] mA<br>(10 to 20] Hz<br>(20 to 45] Hz<br>(45 to 100] Hz<br>(100 Hz to 5 kHz]<br>(5 to 20] kHz<br>(20 to 50] kHz<br>(50 to 100] kHz | $ \sqrt{(0.46\% \cdot OR)^{2} + (38 \mu A)^{2}} + 27 \mu A $ $ \sqrt{(0.17\% \cdot OR)^{2} + (38 \mu A)^{2}} + 26 \mu A $ $ \sqrt{(694 \frac{\mu A}{A} \cdot OR)^{2} + (38 \mu A)^{2}} + 23 \mu A $ $ \sqrt{(347 \frac{\mu A}{A} \cdot OR)^{2} + (37 \mu A)^{2}} + 1.3 nA $ $ \sqrt{(694 \frac{\mu A}{A} \cdot OR)^{2} + (52 \mu A)^{2}} + 20 nA $ $ \sqrt{(0.46\% \cdot OR)^{2} + (142 \mu A)^{2}} + 51 \mu A $ $ \sqrt{(0.64\% \cdot OR)^{2} + (541 \mu A)^{2}} + 152 nA $                                     | DMM HP 3458A                                       |



| Electrical – DC/Low Freq                            |                                                            |                                                                               | T                                                  |
|-----------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------|
| Parameter/Equipment                                 | Range 5 [including end point] (does not include end point) | Expanded Uncertainty of Measurement (+/-)                                     | Reference Standard,<br>Method, and/or<br>Equipment |
|                                                     | (120 mA to 1.05 A]                                         |                                                                               |                                                    |
|                                                     | (10 to 20] Hz                                              | $\sqrt{(0.46\% \cdot \text{OR})^2 + (548 \ \mu\text{A})^2} + 236 \mu\text{A}$ |                                                    |
|                                                     | \                                                          | $\sqrt{(0.19\% \cdot OR)^2 + (548 \mu A)^2} + 222 \mu A$                      |                                                    |
| AC Current,                                         | (20 to 45] Hz                                              | $\sqrt{926 \frac{\mu A}{A} \cdot OR} + (491 \mu A)^2 + 119 \text{ nA}$        |                                                    |
| Sources 1,2                                         | (45 to 100] Hz                                             | /                                                                             | DMM HP 3458A                                       |
|                                                     | (100 Hz to 5 kHz]                                          | $\sqrt{(0.12 \% \cdot \text{OR})^2 + (752 \mu\text{A})^2} + 194 \mu\text{A}$  |                                                    |
|                                                     | (5 to 20] kHz                                              | $\sqrt{(0.35\% \cdot \text{OR})^2 + (1.0 \text{ mA})^2} + 228 \mu\text{A}$    |                                                    |
|                                                     | (20 to 50] kHz                                             | $\sqrt{(1.16\% \cdot \text{OR})^2 + (3.5 \text{mA})^2} + 459 \mu\text{A}$     |                                                    |
|                                                     | (1.05 to 20] A                                             |                                                                               |                                                    |
| AC Current,                                         | (10 to 1 000] Hz                                           | 690 μΑ/Α                                                                      | Shunt FLUKE A40A-20A                               |
| Sources <sup>1,2</sup>                              | (1 000 Hz to 5 kHz]                                        | 870 μA/A                                                                      |                                                    |
| A.C.C                                               | (20 to 100] A                                              |                                                                               | Calibrator FLUKE 5520A,                            |
| AC Current,                                         | (10 to 100] Hz                                             | 8.4 mA/A OR                                                                   | AC Clamp meter used as                             |
| Sources <sup>1,2</sup>                              | (100 to 400] Hz                                            | 15 mA/A OR                                                                    | transfer standard                                  |
| AC Current,                                         | (100 to 1 000] A                                           |                                                                               | Calibrator FLUKE 5520A,                            |
| Sources 1,2                                         | (10 to 50] Hz                                              | 8.0 mA/A OR                                                                   | AC Clamp meter used as                             |
| Sources                                             | (50 to 100] Hz                                             | 7.9 mA/A OR                                                                   | transfer standard                                  |
|                                                     | $0~\mathrm{m}\Omega$                                       | $4.6~\mu\Omega$                                                               | IEC 60051-9                                        |
| DC Resistance                                       | 100 μΩ                                                     | $38$ μ $\Omega/\Omega$                                                        | IEC 60477                                          |
| Measuring Instruments <sup>1</sup>                  | 1 mΩ                                                       | $34 \mu\Omega/\Omega$                                                         | IEC 60564                                          |
|                                                     | 10 mΩ                                                      | 56 μΩ/Ω                                                                       | Short measurement                                  |
|                                                     | 100 mΩ                                                     | 824 μΩ/Ω                                                                      |                                                    |
|                                                     | 1 Ω                                                        | 9.3 μΩ/Ω                                                                      | Standard Resistors:                                |
|                                                     | 1.9 Ω                                                      | 15 μΩ/Ω                                                                       | Tettex 3200, Tettex 3201                           |
| DC Resistance                                       | 10 Ω                                                       | 9.3 μΩ/Ω                                                                      | Tettex 3202, Tettex 3203                           |
| Measuring Instruments <sup>1</sup>                  | 19 Ω<br>100 Ω                                              | 37 μΩ/Ω                                                                       | Tettex 3274, Tettex 3275                           |
| Wieasuring instruments                              | 190 Ω                                                      | 12 μΩ/Ω<br>24 μΩ/Ω                                                            | Calibrator Datron 4708                             |
|                                                     | 190 Ω<br>1 kΩ                                              | 24 μs2/s2<br>11 μΩ/Ω                                                          | Calibrator Fluke 5700A                             |
|                                                     | 1.9 kΩ                                                     | 11 μΩ/Ω<br>18 μΩ/Ω                                                            | Calibrator Keithley 263                            |
|                                                     | 1.9 kg2<br>10 kΩ                                           | 10 μs2/s2<br>11 μΩ/Ω                                                          |                                                    |
|                                                     | 19 kΩ                                                      | 17 μΩ/Ω                                                                       |                                                    |
|                                                     | 100 kΩ                                                     | $17 \mu s 2 2$ $14 \mu \Omega / \Omega$                                       | Standard Resistors:                                |
| DC Resistance<br>Measuring Instruments <sup>1</sup> | 190 kΩ                                                     | 20 μΩ/Ω                                                                       | Tettex 3200, Tettex 3201                           |
|                                                     | 1 MΩ                                                       | 32 μΩ/Ω                                                                       | Tettex 3202, Tettex 3203                           |
|                                                     | 1.9 ΜΩ                                                     | $30 \mu\Omega/\Omega$                                                         | Tettex 3274, Tettex 3275                           |
|                                                     | 10 MΩ                                                      | $63 \mu\Omega/\Omega$                                                         | Calibrator Datron 4708                             |
|                                                     | 19 ΜΩ                                                      | 67 μΩ/Ω                                                                       | Calibrator Fluke 5700A                             |
|                                                     | $100~\mathrm{M}\Omega$                                     | $214 \mu\Omega/\Omega$                                                        | Calibrator Keithley 263                            |
|                                                     | 1 GΩ                                                       | $5.1~\mathrm{m}\Omega/\Omega$                                                 |                                                    |



| Parameter/Equipment                                   | Range 5 [including end point] (does not include end point)                                                                                                                                                                                                                                                                                                                                                                                             | Expanded Uncertainty of<br>Measurement (+/-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Reference Standard,<br>Method, and/or<br>Equipment                                                      |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| DC Resistance<br>Measuring Instruments <sup>1,2</sup> | $(1 \text{ to } 20] \text{ m}\Omega$ $(20 \text{ to } 200] \text{ m}\Omega$ $(200 \text{ m}\Omega \text{ to } 2 \Omega]$ $(2 \text{ to } 19] \Omega$ $(19 \text{ to } 190] \Omega$ $90) \Omega \text{ to } 1.9 \text{ k}\Omega]$ $(1.9 \text{ to } 190] \text{ k}\Omega$ $(19 \text{ to } 190] \text{ k}\Omega$ $(190 \text{ k} \Omega \text{ to } 1.9 \text{ M}\Omega]$ $(1.9 \text{ to } 19] \text{ M}\Omega$ $(19 \text{ to } 190] \text{ M}\Omega$ | $\begin{split} \sqrt{\left(347 \frac{\mu \Omega}{\Omega} \cdot \text{OR}\right)^2 + \left(10.8 \mu \Omega\right)^2} &+ 830 n \Omega \\ \sqrt{\left(347 \frac{\mu \Omega}{\Omega} \cdot \text{OR}\right)^2 + \left(108 \mu \Omega\right)^2} &+ 8.3 \mu \Omega \\ \sqrt{\left(347 \frac{\mu \Omega}{\Omega} \cdot \text{OR}\right)^2 + \left(1.08 m \Omega\right)^2} &+ 83 \mu \Omega \\ \sqrt{\left(17.4 \frac{\mu \Omega}{\Omega} \cdot \text{OR}\right)^2 + \left(302 \mu \Omega\right)^2} &+ 15.2 \mu \Omega \\ \sqrt{\left(12.7 \frac{\mu \Omega}{\Omega} \cdot \text{OR}\right)^2 + \left(1.2 m \Omega\right)^2} &+ 65.8 \mu \Omega \\ \sqrt{\left(10.4 \frac{\mu \Omega}{\Omega} \cdot \text{OR}\right)^2 + \left(11 m \Omega\right)^2} &+ 619 \mu \Omega \\ \sqrt{\left(10.4 \frac{\mu \Omega}{\Omega} \cdot \text{OR}\right)^2 + \left(110 m \Omega\right)^2} &+ 58.6 m \Omega \\ \sqrt{\left(16.2 \frac{\mu \Omega}{\Omega} \cdot \text{OR}\right)^2 + \left(1.4 \Omega\right)^2} &+ 58.6 m \Omega \\ \sqrt{\left(34.7 \frac{\mu \Omega}{\Omega} \cdot \text{OR}\right)^2 + \left(638 \Omega\right)^2} &+ 1.07 \Omega \\ \sqrt{\left(34.7 \frac{\mu \Omega}{\Omega} \cdot \text{OR}\right)^2 + \left(638 \Omega\right)^2} &+ 61.2 \Omega \\ \\ \sqrt{\left(347 \frac{\mu \Omega}{\Omega} \cdot \text{OR}\right)^2 + \left(23.3 k \Omega\right)^2} &+ 8.78 k \Omega \end{split}$ | Resistance decades,<br>micro-ommeter Tettex<br>2226 or DMM Datron<br>1281 used as transfer<br>standards |
| DC Resistance<br>Measuring Instruments <sup>1,2</sup> | (190 MΩ to 1.9 GΩ] (1.9 to 10] GΩ                                                                                                                                                                                                                                                                                                                                                                                                                      | $\sqrt{(0.35\%  \text{OR})^2 + (1.01  \text{M}\Omega)^2} + 916  \text{k}\Omega$ $12  \text{m}\Omega/\Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Resistance decades,<br>micro-ommeter Tettex<br>2226 or DMM Datron<br>1281 used as transfer<br>standards |
| DC Resistance<br>Measuring Instruments <sup>1,2</sup> | (10 to 90] GΩ                                                                                                                                                                                                                                                                                                                                                                                                                                          | 58 mΩ/Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Resistance decades,<br>micro-ommeter Tettex<br>2226 or DMM Datron<br>1281 used as transfer<br>standards |





| Parameter/Equipment                                 | Range <sup>5</sup> [including end point] (does not include end point)                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Expanded Uncertainty of<br>Measurement (+/-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Reference Standard,<br>Method, and/or<br>Equipment                                                     |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| DC Resistance,<br>Resistors <sup>1,2</sup>          | $0 \text{ m}\Omega$ $(100 \text{ μ}\Omega \text{ to } 2 \text{ m}\Omega]$ $(2 \text{ to } 20] \text{ m}\Omega$ $(20 \text{ to } 200] \text{ m}\Omega$ $(200 \text{ m}\Omega \text{ to } 2 \Omega]$ $(2 \text{ to } 19] \Omega$ $(19 \text{ to } 190] \Omega$ $(190 \Omega \text{ to } 1.9 \text{ k}\Omega]$ $(1.9 \text{ to } 190] \text{ k}\Omega$ $(190 \text{ k}\Omega \text{ to } 1.9 \text{ M}\Omega]$ $(1.9 \text{ to } 19] \text{ M}\Omega$ $(19 \text{ to } 190] \text{ M}\Omega$ $(19 \text{ to } 190] \text{ M}\Omega$ | $\frac{290 \text{ n}\Omega}{\sqrt{\left(347 \frac{\mu\Omega}{\Omega} \cdot \text{OR}\right)^2 + \left(1.08 \mu\Omega\right)^2}} + 83 \text{ n}\Omega}$ $\sqrt{\left(347 \frac{\mu\Omega}{\Omega} \cdot \text{OR}\right)^2 + \left(10.8 \mu\Omega\right)^2} + 830 \text{ n}\Omega$ $\sqrt{\left(347 \frac{\mu\Omega}{\Omega} \cdot \text{OR}\right)^2 + \left(108 \mu\Omega\right)^2} + 834 \mu\Omega$ $\sqrt{\left(347 \frac{\mu\Omega}{\Omega} \cdot \text{OR}\right)^2 + \left(1.08 \mu\Omega\right)^2} + 83 \mu\Omega$ $\sqrt{\left(17.4 \frac{\mu\Omega}{\Omega} \cdot \text{OR}\right)^2 + \left(302 \mu\Omega\right)^2} + 15.2 \mu\Omega$ $\sqrt{\left(12.7 \frac{\mu\Omega}{\Omega} \cdot \text{OR}\right)^2 + \left(1.2 \mu\Omega\right)^2} + 65.8 \mu\Omega$ $\sqrt{\left(10.4 \frac{\mu\Omega}{\Omega} \cdot \text{OR}\right)^2 + \left(11 \mu\Omega\right)^2} + 619 \mu\Omega$ $\sqrt{\left(10.4 \frac{\mu\Omega}{\Omega} \cdot \text{OR}\right)^2 + \left(110 \mu\Omega\right)^2} + 6.19 m\Omega$ $\sqrt{\left(10.4 \frac{\mu\Omega}{\Omega} \cdot \text{OR}\right)^2 + \left(1.4 \Omega\right)^2} + 58.6 m\Omega$ $\sqrt{\left(16.2 \frac{\mu\Omega}{\Omega} \cdot \text{OR}\right)^2 + \left(32.1 \Omega\right)^2} + 1.07 \Omega$ $\sqrt{\left(34.7 \frac{\mu\Omega}{\Omega} \cdot \text{OR}\right)^2 + \left(638 \Omega\right)^2} + 61.2 \Omega$ $\sqrt{\left(347 \frac{\mu\Omega}{\Omega} \cdot \text{OR}\right)^2 + \left(23.3 k\Omega\right)^2} + 8.78 k\Omega$ $\sqrt{\left(0.35 \% \cdot \text{OR}\right)^2 + \left(1.01 \mu\Omega\right)^2} + 916 k\Omega$ | Micro-ommeter<br>Tettex 2226<br>DMM Datron 1281<br>OR – Of Reading                                     |
| AC Resistance. Measuring Instruments <sup>1,2</sup> | [1 to 6.25) Ω<br>[12 to 30) Hz<br>[30 to 100) Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\sqrt{(0.59\% \cdot \text{OR})^2 + (1.42 \text{ m}\Omega)^2}$ $\sqrt{(0.30\% \cdot \text{OR})^2 + (1.42 \text{ m}\Omega)^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Resistance decades<br>GENRAD 1433-F; 1433-H<br>Digibridge GENRAD<br>1689M used as transfer<br>standard |
| AC Resistance. Measuring Instruments 1,2            | [1 to 6.25) Ω<br>[100 to 250) Hz<br>[250 to 1 000) Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\sqrt{(0.23\% \cdot OR)^2 + (1.42 \text{ m}\Omega)^2}$ $\sqrt{(0.16\% \cdot OR)^2 + (1.42 \text{ m}\Omega)^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Resistance decades<br>GENRAD<br>1433-F; 1433-H                                                         |





| Electrical – DC/Low Freq                             | Range <sup>5</sup>                                 | Expanded Uncertainty of                                         | Reference Standard,             |
|------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------|---------------------------------|
| Parameter/Equipment                                  | [including end point] (does not include end point) | Measurement (+/-)                                               | Method, and/or<br>Equipment     |
|                                                      | [1 to 6.25) Ω                                      | 2                                                               | Digibridge GENRAD               |
|                                                      | 1 kHz                                              | $\sqrt{(0.08\% \cdot \text{OR})^2 + (1.42 \text{ m}\Omega)^2}$  | 1689M used as transfer          |
|                                                      | (1 to 3] kHz                                       | $\sqrt{(0.16\% \cdot OR)^2 + (1.42 \text{ m}\Omega)^2}$         | standard                        |
| AC Resistance.                                       | (3 to 6] kHz                                       | $\sqrt{(0.23\% \cdot OR)^2 + (1.42 \text{ m}\Omega)^2}$         |                                 |
| Measuring Instruments <sup>1,2</sup>                 | (6 to 10] kHz                                      | $\sqrt{(0.30\% \cdot OR)^2 + (1.42 \text{ m}\Omega)^2}$         |                                 |
|                                                      | (10 to 20] kHz                                     | $\sqrt{(0.45\% \cdot \text{OR})^2 + (1.42 \text{ m}\Omega)^2}$  |                                 |
|                                                      | (20 to 50] kHz                                     | $\sqrt{(1.21\% \cdot \text{OR})^2 + (1.42 \text{ m}\Omega)^2}$  |                                 |
|                                                      | (50 to 100] kHz                                    | $\sqrt{(2.39 \% \cdot \text{OR})^2 + (1.42 \text{ m}\Omega)^2}$ |                                 |
|                                                      | [6.25 to 100) $\Omega$                             | 2                                                               |                                 |
|                                                      | [12 to 30) Hz                                      | $\sqrt{(0.10\% \cdot \text{OR})^2 + (1.42 \text{ m}\Omega)^2}$  |                                 |
|                                                      | [30 to 100) Hz                                     | $\sqrt{(0.06\% \cdot \text{OR})^2 + (1.42 \text{ m}\Omega)^2}$  |                                 |
|                                                      | [100 to 250) Hz                                    | $\sqrt{(0.05\% \cdot OR)^2 + (1.42 \text{ m}\Omega)^2}$         | D 1 1                           |
|                                                      | [250 to 1 000) Hz                                  | $\sqrt{(0.03\% \cdot OR)^2 + (1.42 \text{ m}\Omega)^2}$         | Resistance decades GENRAD       |
| AC Resistance.                                       | 1 k <mark>Hz</mark>                                | $\sqrt{(0.02 \% \cdot OR)^2 + (1.42 \text{ m}\Omega)^2}$        | 1433-F; 1433-H                  |
| Measuring Instruments <sup>1,2</sup>                 | (1 to 3] kHz                                       | $\sqrt{(0.03\% \cdot OR)^2 + (1.42 \text{ m}\Omega)^2}$         | Digibridge GENRAD               |
|                                                      | (3 to 6] kHz                                       | $\sqrt{(0.05\% \cdot OR)^2 + (1.42 \text{ m}\Omega)^2}$         | 1689M used as transfer standard |
|                                                      | (6 to 10] kHz                                      | $\sqrt{(0.06\% \cdot \text{OR})^2 + (1.42 \text{ m}\Omega)^2}$  | Standard                        |
|                                                      | (10 to 20] kHz                                     | $\sqrt{(0.08\% \cdot OR)^2 + (1.42 \text{ m}\Omega)^2}$         |                                 |
|                                                      | (20 to 50] kHz                                     | $\sqrt{(0.20\% \cdot \text{OR})^2 + (1.42 \text{ m}\Omega)^2}$  |                                 |
|                                                      | (50 to 100] kHz                                    | $\sqrt{(037 \% \cdot \text{OR})^2 + (1.42 \text{ m}\Omega)^2}$  |                                 |
|                                                      | [ $100 \Omega$ to $1.6 k \Omega$ )                 | 22 ( )2                                                         |                                 |
|                                                      | [12 to 30) Hz                                      | $\sqrt{(0.10\% \cdot OR)^2 + (1.02\Omega)^2}$                   |                                 |
|                                                      | [30 to 100) Hz                                     | $\sqrt{(0.06\% \cdot OR)^2 + (1.02\Omega)^2}$                   |                                 |
|                                                      | [100 to 250) Hz                                    | $\sqrt{(0.05\% \cdot OR)^2 + (1.02\Omega)^2}$                   |                                 |
| AC Resistance.  Measuring Instruments <sup>1,2</sup> | ]250 to 1 000) Hz                                  | $\sqrt{(0.03\% \cdot OR)^2 + (1.02\Omega)^2}$                   | Resistance decades<br>GENRAD    |
|                                                      | 1 kHz                                              | $\sqrt{(0.02 \% \cdot OR)^2 + (1.02 \Omega)^2}$                 | 1433-F; 1433-H                  |
|                                                      | (1 to 3] kHz                                       | $\sqrt{(0.03\% \cdot OR)^2 + (1.02\Omega)^2}$                   | Digibridge GENRAD               |
|                                                      | (3 to 6] kHz                                       | $\sqrt{(0.05\% \cdot OR)^2 + (1.02\Omega)^2}$                   | 1689M used as transfer          |
|                                                      | (6 to 10)] kHz                                     | $\sqrt{(0.06 \% \cdot OR)^2 + (1.02 \Omega)^2}$                 | standard                        |
|                                                      | (10 to 20] kHz                                     | $\sqrt{(0.10 \% \cdot OR)^2 + (1.02 \Omega)^2}$                 |                                 |
|                                                      | (20 to 50] kHz                                     | $\sqrt{(0.20\% \cdot OR)^2 + (1.02\Omega)^2}$                   |                                 |
|                                                      | (50 to 100] kHz                                    | $\sqrt{(037\% \cdot OR)^2 + (1.02\Omega)^2}$                    |                                 |



| Parameter/Equipment                                 | Range 5 [including end point] (does not include end point)                                                                                                                  | Expanded Uncertainty of Measurement (+/-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Reference Standard,<br>Method, and/or<br>Equipment                                                        |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| AC Resistance. Measuring Instruments <sup>1,2</sup> | (1.6 to 25.6] kΩ [12 to 30) Hz [30 to 100) Hz [100 to 250) Hz [250 to 1 000) Hz 1 kHz (1 to 3] kHz (3 to 6] kHz (6 to 10] kHz (10 to 20] kHz (20 to 50] kHz (50 to 100] kHz | $ \sqrt{(0.10\% \cdot OR)^2 + (11.7\Omega)^2} $ $ \sqrt{(0.06\% \cdot OR)^2 + (11.7\Omega)^2} $ $ \sqrt{(0.05\% \cdot OR)^2 + (11.7\Omega)^2} $ $ \sqrt{(0.03\% \cdot OR)^2 + (11.7\Omega)^2} $ $ \sqrt{(0.02\% \cdot OR)^2 + (11.7\Omega)^2} $ $ \sqrt{(0.03\% \cdot OR)^2 + (11.7\Omega)^2} $ $ \sqrt{(0.05\% \cdot OR)^2 + (11.7\Omega)^2} $ $ \sqrt{(0.06\% \cdot OR)^2 + (11.7\Omega)^2} $ $ \sqrt{(0.08\% \cdot OR)^2 + (11.7\Omega)^2} $ $ \sqrt{(0.20\% \cdot OR)^2 + (11.7\Omega)^2} $ $ \sqrt{(0.20\% \cdot OR)^2 + (11.7\Omega)^2} $ $ \sqrt{(0.37\% \cdot OR)^2 + (11.7\Omega)^2} $ | Resistance decades<br>GENRAD<br>1433-F; 1433-H<br>Digibridge GENRAD<br>1689M used as transfer<br>standard |
| AC Resistance. Measuring Instruments <sup>1,2</sup> | (25.6 to 410] kΩ [12 to 30) Hz [30 to 100) Hz [100 to 250) Hz [250 to 1 000) Hz 1 kHz (1 to 3] kHz (3 to 6] kHz (6 to 10] kHz (10 to 20] kHz                                | $ \sqrt{(0.10\% \cdot OR)^2 + (102\Omega)^2} $ $ \sqrt{(0.06\% \cdot OR)^2 + (102\Omega)^2} $ $ \sqrt{(0.05\% \cdot OR)^2 + (102\Omega)^2} $ $ \sqrt{(0.03\% \cdot OR)^2 + (102\Omega)^2} $ $ \sqrt{(0.02\% \cdot OR)^2 + (102\Omega)^2} $ $ \sqrt{(0.05\% \cdot OR)^2 + (102\Omega)^2} $ $ \sqrt{(0.09\% \cdot OR)^2 + (102\Omega)^2} $ $ \sqrt{(0.20\% \cdot OR)^2 + (102\Omega)^2} $ $ \sqrt{(0.60\% \cdot OR)^2 + (102\Omega)^2} $                                                                                                                                                          | Resistance decades<br>GENRAD<br>1433-F; 1433-H<br>Digibridge GENRAD<br>1689M used as transfer<br>standard |





| Parameter/Equipment                        | Range 5 [including end point] (does not include end point)                                                                                                                          | Expanded Uncertainty of Measurement (+/-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Reference Standard,<br>Method, and/or<br>Equipment                                                                                                             |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AC Resistance,<br>Resistors <sup>1,2</sup> | (1 to 6.25] Ω  [12 to 30) Hz  [30 to 100) Hz  [100 to 250) Hz  [250 to 1 000) Hz  1 kHz  (1 to 3] kHz  (3 to 6] kHz  (6 to 10] kHz  (10 to 20] kHz  (20 to 50] kHz  (50 to 100] kHz | $ \sqrt{(0.59 \% \cdot OR)^2 + (1.42 \text{ m}\Omega)^2} $ $ \sqrt{(0.30 \% \cdot OR)^2 + (1.42 \text{ m}\Omega)^2} $ $ \sqrt{(0.23 \% \cdot OR)^2 + (1.42 \text{ m}\Omega)^2} $ $ \sqrt{(0.16 \% \cdot OR)^2 + (1.42 \text{ m}\Omega)^2} $ $ \sqrt{(0.08 \% \cdot OR)^2 + (1.42 \text{ m}\Omega)^2} $ $ \sqrt{(0.16 \% \cdot OR)^2 + (1.42 \text{ m}\Omega)^2} $ $ \sqrt{(0.23 \% \cdot OR)^2 + (1.42 \text{ m}\Omega)^2} $ $ \sqrt{(0.30 \% \cdot OR)^2 + (1.42 \text{ m}\Omega)^2} $ $ \sqrt{(0.45 \% \cdot OR)^2 + (1.42 \text{ m}\Omega)^2} $ $ \sqrt{(1.21 \% \cdot OR)^2 + (1.42 \text{ m}\Omega)^2} $ $ \sqrt{(2.39 \% \cdot OR)^2 + (1.42 \text{ m}\Omega)^2} $                                                                   | Digibridge Genrad 1689M Resistors that have a serial inductance not exceeding 10 µH. The uncertainties will be increased for resistors with higher inductance. |
| AC Resistance,<br>Resistors <sup>1,2</sup> | (6.25 to 100] Ω [12 to 30) Hz [30 to 100) Hz [100 to 250) Hz [250 to 1 000) Hz 1 kHz (1 to 3] kHz (3 to 6] kHz (6 to 10] kHz (10 to 20] kHz (20 to 50] kHz (50 to 100] kHz          | $ \sqrt{(0.10\% \cdot \text{OR})^2 + (1.42 \text{ m}\Omega)^2} $ $ \sqrt{(0.06\% \cdot \text{OR})^2 + (1.42 \text{ m}\Omega)^2} $ $ \sqrt{(0.05\% \cdot \text{OR})^2 + (1.42 \text{ m}\Omega)^2} $ $ \sqrt{(0.03\% \cdot \text{OR})^2 + (1.42 \text{ m}\Omega)^2} $ $ \sqrt{(0.02\% \cdot \text{OR})^2 + (1.42 \text{ m}\Omega)^2} $ $ \sqrt{(0.03\% \cdot \text{OR})^2 + (1.42 \text{ m}\Omega)^2} $ $ \sqrt{(0.05\% \cdot \text{OR})^2 + (1.42 \text{ m}\Omega)^2} $ $ \sqrt{(0.06\% \cdot \text{OR})^2 + (1.42 \text{ m}\Omega)^2} $ $ \sqrt{(0.08\% \cdot \text{OR})^2 + (1.42 \text{ m}\Omega)^2} $ $ \sqrt{(0.20\% \cdot \text{OR})^2 + (1.42 \text{ m}\Omega)^2} $ $ \sqrt{(0.37\% \cdot \text{OR})^2 + (1.42 \text{ m}\Omega)^2} $ | Digibridge Genrad 1689M Resistors that have a serial inductance not exceeding 10 µH. The uncertainties will be increased for resistors with higher inductance. |





| Parameter/Equipment                        | Range <sup>5</sup> [including end point] (does not include end point)                                                                                                         | Expanded Uncertainty of Measurement (+/-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Reference Standard,<br>Method, and/or<br>Equipment                                                                                                            |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AC Resistance,<br>Resistors 1,2            | (100 Ω to 1.6 k Ω] [12 to 30) Hz [30 to 100) Hz [100 to 250) Hz [250 to 1 000) Hz 1 kHz (1 to 3] kHz (3 to 6] kHz (6 to 10] kHz (10 to 20] kHz (20 to 50] kHz (50 to 100] kHz | $ \sqrt{(0.10 \% \cdot \text{OR})^2 + (1.02 \Omega)^2} $ $ \sqrt{(0.06 \% \cdot \text{OR})^2 + (1.02 \Omega)^2} $ $ \sqrt{(0.05 \% \cdot \text{OR})^2 + (1.02 \Omega)^2} $ $ \sqrt{(0.03 \% \cdot \text{OR})^2 + (1.02 \Omega)^2} $ $ \sqrt{(0.02 \% \cdot \text{OR})^2 + (1.02 \Omega)^2} $ $ \sqrt{(0.03 \% \cdot \text{OR})^2 + (1.02 \Omega)^2} $ $ \sqrt{(0.05 \% \cdot \text{OR})^2 + (1.02 \Omega)^2} $ $ \sqrt{(0.06 \% \cdot \text{OR})^2 + (1.02 \Omega)^2} $ $ \sqrt{(0.10 \% \cdot \text{OR})^2 + (1.02 \Omega)^2} $ $ \sqrt{(0.20 \% \cdot \text{OR})^2 + (1.02 \Omega)^2} $ $ \sqrt{(0.20 \% \cdot \text{OR})^2 + (1.02 \Omega)^2} $ | Digibridge Genrad 1689M Resistors that have a serial inductance not exceeding 10 µH. The uncertainties will be increased for resistors with higher inductance |
| AC Resistance,<br>Resistors 1,2            | (1.6 Ω to 25.6 k Ω] [12 to 30) Hz [30 to 100) Hz [100 to 250) Hz [250 to 1000) Hz 1 kHz (1 to 3] kHz (3 to 6] kHz (6 to 10] kHz (10 to 20] kHz (20 to 50] kHz (50 to 100] kHz | $ \sqrt{(0.10 \% \cdot OR)^2 + (11.7 \Omega)^2} $ $ \sqrt{(0.06 \% \cdot OR)^2 + (11.7 \Omega)^2} $ $ \sqrt{(0.05 \% \cdot OR)^2 + (11.7 \Omega)^2} $ $ \sqrt{(0.03 \% \cdot OR)^2 + (11.7 \Omega)^2} $ $ \sqrt{(0.02 \% \cdot OR)^2 + (11.7 \Omega)^2} $ $ \sqrt{(0.03 \% \cdot OR)^2 + (11.7 \Omega)^2} $ $ \sqrt{(0.05 \% \cdot OR)^2 + (11.7 \Omega)^2} $ $ \sqrt{(0.06 \% \cdot OR)^2 + (11.7 \Omega)^2} $ $ \sqrt{(0.08 \% \cdot OR)^2 + (11.7 \Omega)^2} $ $ \sqrt{(0.20 \% \cdot OR)^2 + (11.7 \Omega)^2} $ $ \sqrt{(0.37 \% \cdot OR)^2 + (11.7 \Omega)^2} $                                                                              | Digibridge Genrad 1689M Resistors that have a serial inductance not exceeding 10 µH. The uncertainties will be increased for resistors with higher inductance |
| AC Resistance,<br>Resistors <sup>1,2</sup> | (25.6 Ω to 410 kΩ] [12 to 30) Hz [30 to 100) Hz [100 to 250) Hz [250 to 1 000) Hz 1 kHz (1 to 3] kHz (3 to 6] kHz (6 to 10] kHz (10 to 20] kHz                                | $ \sqrt{(0.10\% \cdot OR)^2 + (102\Omega)^2} $ $ \sqrt{(0.06\% \cdot OR)^2 + (102\Omega)^2} $ $ \sqrt{(0.05\% \cdot OR)^2 + (102\Omega)^2} $ $ \sqrt{(0.03\% \cdot OR)^2 + (102\Omega)^2} $ $ \sqrt{(0.02\% \cdot OR)^2 + (102\Omega)^2} $ $ \sqrt{(0.05\% \cdot OR)^2 + (102\Omega)^2} $ $ \sqrt{(0.09\% \cdot OR)^2 + (102\Omega)^2} $ $ \sqrt{(0.20\% \cdot OR)^2 + (102\Omega)^2} $ $ \sqrt{(0.60\% \cdot OR)^2 + (102\Omega)^2} $                                                                                                                                                                                                             | Digibridge Genrad 1689M Resistors that have a serial inductance not exceeding 10 µH. The uncertainties will be increased for resistors with higher inductance |



| Parameter/Equipment                               | Range 5 [including end point] (does not include end point)                                                                                                                                                           | Expanded Uncertainty of Measurement (+/-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Reference Standard,<br>Method, and/or<br>Equipment                                                                                                                                                  |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Capacitance, Measuring Instruments <sup>1,2</sup> | 1 kHz  1 pF 10 pF 100 pF 1000 pF 1000 nF 10 nF 100 nF 1 μF [1 to 10) pF (10 to 1 000] pF (1 to 1.5] nF (1.5 to 6.4] nF (6.4 to 10] nF (10 to 25] nF (25 to 100] nF (100 to 200] nF (200 to 400] nF (400 to 1 000) nF | 0.19 fF<br>1.3 fF<br>11 fF<br>110 fF<br>1.5 pF<br>15 pF<br>150 pF<br>$\sqrt{(0.02 \% \cdot OR)^2 + (2.2 \text{ fF})^2}$<br>$\sqrt{(0.02 \% \cdot OR)^2 + (2.4 \text{ fF})^2}$<br>$\sqrt{(0.02 \% \cdot OR)^2 + (680 \text{ fF})^2}$<br>$\sqrt{(0.02 \% \cdot OR)^2 + (680 \text{ fF})^2}$<br>$\sqrt{(0.02 \% \cdot OR)^2 + (740 \text{ fF})^2}$<br>$\sqrt{(0.02 \% \cdot OR)^2 + (3.3 \text{ pF})^2}$<br>$\sqrt{(0.02 \% \cdot OR)^2 + (11 \text{ pF})^2}$<br>$\sqrt{(0.02 \% \cdot OR)^2 + (46 \text{ pF})^2}$<br>$\sqrt{(0.02 \% \cdot OR)^2 + (46 \text{ pF})^2}$<br>$\sqrt{(0.02 \% \cdot OR)^2 + (46 \text{ pF})^2}$ | IEC 60477 IEC 60564 HP 16381A, HP 16382A HP 16383A, HP 16384A St. Capacitors Genrad 1409 Y, Genrad 1409 L, Genrad 1409 T, Capacitance Decades + Digibridge Genrad 1689M used as a transfer standard |
| Capacitance,<br>Capacitors <sup>1,2</sup>         | 1 kHz  [1 to 10] pF  (10 to 1 000] pF  (1 to 1.5] nF  (1.5 to 6.4] nF  (6.4 to 10] nF  (10 to 25] nF  (25 to 100] nF  (100 to 200] nF  (200 to 400] nF  (400 to 1 000) nF                                            | $\sqrt{(0.02 \% \cdot OR)^2 + (2.2 \text{ fF})^2}$ $\sqrt{(0.02 \% \cdot OR)^2 + (7.4 \text{ fF})^2}$ $\sqrt{(0.02 \% \cdot OR)^2 + (240 \text{ fF})^2}$ $\sqrt{(0.02 \% \cdot OR)^2 + (680 \text{ fF})^2}$ $\sqrt{(0.02 \% \cdot OR)^2 + (740 \text{ fF})^2}$ $\sqrt{(0.02 \% \cdot OR)^2 + (3.3 \text{ pF})^2}$ $\sqrt{(0.02 \% \cdot OR)^2 + (11 \text{ pF})^2}$ $\sqrt{(0.02 \% \cdot OR)^2 + (29 \text{ pF})^2}$ $\sqrt{(0.02 \% \cdot OR)^2 + (46 \text{ pF})^2}$ $\sqrt{(0.02 \% \cdot OR)^2 + (102 \text{ pF})^2}$                                                                                                | Digibridge Genrad 1689M The uncertainties measurement of capacitors that have a dissipation factor \le 1\% of a lossless capacitor                                                                  |





| Parameter/Equipment                             | Range 5 [including end point] (does not include end point) | Expanded Uncertainty of Measurement (+/-)                                                                             | Reference Standard,<br>Method, and/or<br>Equipment                                   |
|-------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
|                                                 | 100 μH<br>100 Hz<br>400 Hz<br>1 kHz                        | 1.1 μΗ                                                                                                                |                                                                                      |
|                                                 | 1 mH<br>100 Hz<br>400 Hz<br>1 kHz                          | 1.2 μΗ                                                                                                                | IEC 60477<br>IEC 60 564<br>St. Inductors                                             |
| Inductance Measuring Instruments <sup>1,2</sup> | 10 mH<br>100 Hz<br>400 Hz<br>1kHz                          | 11 μΗ                                                                                                                 | Genrad 1482- B,<br>Genrad 1482-E,<br>Genrad 1482-H,<br>Genrad 1482-L, Genrad         |
|                                                 | 100 mH<br>100 Hz<br>400 Hz<br>1 kHz                        | 33 µН                                                                                                                 | 1482-P, Genrad 1482-T,<br>+Digibridge Genrad<br>1689M<br>Used as a transfer standard |
|                                                 | 1 H<br>100 Hz<br>400 Hz<br>10 H                            | 1.2 mH<br>1.3 mH                                                                                                      |                                                                                      |
|                                                 | 100 Hz                                                     | 13 mH                                                                                                                 |                                                                                      |
| Inductance Measuring Instruments 1,2            | 100 Hz<br>[10 μH to 1 mH]                                  | $\sqrt{(9.10\% \cdot OR)^2 + (5.1 \mu H)^2}$                                                                          | IEC 60477<br>IEC 60 564<br>St. Inductors<br>Genrad 1482- B,                          |
|                                                 | (1 to 9] mH<br>(9 to 90] mH                                | $\sqrt{(0.07 \% \cdot \text{OR})^2 + (5.1 \mu\text{H})^2}$ $\sqrt{(0.11 \% \cdot \text{OR})^2 + (3.1 \mu\text{H})^2}$ | Genrad 1482-E,<br>Genrad 1482-H,                                                     |
|                                                 | (90 to 900] mH                                             | $\sqrt{(0.17\% \cdot OR)^2 + (55 \mu H)^2}$                                                                           | Genrad 1482-L, Genrad 1482-P, Genrad 1482-T,                                         |
|                                                 | (0.9 to 9] H                                               | $\sqrt{(0.05\% \cdot OR)^2 + (11 \text{ mH})^2}$                                                                      | Inductance Decade +Digibridge Genrad                                                 |
|                                                 | (9 to 10] H                                                | $\sqrt{(0.06\% \cdot \text{OR})^2 + (24 \text{ mH})^2}$                                                               | 1689M<br>Used as a transfer standard                                                 |





| Parameter/Equipment                            | Range 5 [including end point] (does not include end point)                                                                                                                                                                    | Expanded Uncertainty of Measurement (+/-)                                                                                                                                                                                                                                                                                                                                                               | Reference Standard,<br>Method, and/or<br>Equipment                                                                                                       |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inductance,<br>Inductors <sup>1,2</sup>        | 100 Hz [10 μH to 1 mH] (1 to 9] mH (9 to 90] mH (90 to 900] mH (0.9 to 9] H (9 to 90] H (90 to 900] H                                                                                                                         | $\sqrt{(9.10\% \cdot \text{OR})^2 + (5.1\mu\text{H})^2}$ $\sqrt{(0.07\% \cdot \text{OR})^2 + (5.1\mu\text{H})^2}$ $\sqrt{(0.11\% \cdot \text{OR})^2 + (3.1\mu\text{H})^2}$ $\sqrt{(0.17\% \cdot \text{OR})^2 + (55\mu\text{H})^2}$ $\sqrt{(0.05\% \cdot \text{OR})^2 + (11\text{ mH})^2}$ $\sqrt{(0.06\% \cdot \text{OR})^2 + (24\text{ mH})^2}$ $\sqrt{(0.49\% \cdot \text{OR})^2 + (21\text{ mH})^2}$ | Digibridge Genrad 1689M The uncertainties apply to the measurement of inductors that have a quality factor ≤ 1% of series impedance of an ideal inductor |
| AC Power, Measuring Instruments <sup>1,2</sup> | [1 to 1 008] V,<br>(0 to 40] Hz, [0 to 20] A<br>[0.00 to 20 160.00] VA<br>PF = 1<br>20160.00 W<br>PF = 0.8<br>8 064.00 W<br>6 048.00 VAR<br>PF = 0.5<br>5 040.00 W<br>8 729.54 VAR<br>PF = 0.2<br>2 016.00 W<br>19 752.69 VAR | 0.06 % OR  0.08 % OR  0.09 % OR  0.05 % OR  0.13 % OR  0.06 % OR  0.32 % OR  0.04 % OR                                                                                                                                                                                                                                                                                                                  | Calibrator<br>FLUKE 6100B                                                                                                                                |
| AC Power, Measuring Instruments 1,2            | (40 to 65] Hz, [0 to 5] A<br>(0.00 to 5 040.00] VA<br>PF = 1<br>5 040.00 W                                                                                                                                                    | 0.04 % OR<br>0.07 % OR                                                                                                                                                                                                                                                                                                                                                                                  | Calibrator<br>FLUKE 6100B                                                                                                                                |
| AC Power, Measuring Instruments <sup>1,2</sup> | (0 to 40] Hz, [0 to 20] A<br>PF = 0.8<br>4 032.00 W<br>3 024.00 VAR<br>PF = 0.5<br>2520.00 W<br>3 117.69 VAR<br>PF = 0.2<br>720.00 W /<br>3 527.27 VAR                                                                        | 0.09 % OR<br>0.05 % OR<br>0.13 % OR<br>0.04 % OR<br>0.32 % OR<br>0.04 % OR                                                                                                                                                                                                                                                                                                                              | Calibrator<br>FLUKE 6100B                                                                                                                                |





| Electrical – DC/Low Freq             | Range 5                      | Even and ad II a containty of                | Reference Standard, |
|--------------------------------------|------------------------------|----------------------------------------------|---------------------|
| Parameter/Equipment                  | [including end point]        | Expanded Uncertainty of<br>Measurement (+/-) | Method, and/or      |
|                                      | (does not include end point) | Wiedsurement (17)                            | Equipment           |
|                                      | (40 to 65] Hz, (5 to 80] A   |                                              |                     |
|                                      | (5 040.00 to 80 640.0] VA    | 0.05 % OR                                    |                     |
|                                      | PF = 1                       |                                              |                     |
|                                      | 80 640.00 W                  | 0.07 % OR                                    |                     |
| AC Power,                            | PF = 0.8                     |                                              | Calibrator          |
| Measuring Instruments <sup>1,2</sup> | 64 512.00 W/                 | 0.09 % OR                                    | FLUKE 6100B         |
|                                      | 48 384.00 VAR                | 0.05 % OR                                    |                     |
|                                      | PF = 0.5                     |                                              |                     |
|                                      | 40 320.00 W/                 | 0.13 % OR                                    |                     |
|                                      | 698.29 VAR                   | 0.05 % OR                                    |                     |
|                                      | (65 to 850] Hz,              |                                              |                     |
|                                      | (20 to 80] A                 |                                              |                     |
|                                      | (20 160.0 to 80 640.0] VA    | 0.06 % OR                                    |                     |
|                                      | PF = 1                       |                                              |                     |
|                                      | 8 0640.00 W                  | 0.08 % OR                                    |                     |
|                                      | PF = 0.8                     |                                              |                     |
| AC Power, AC current                 | 64 512.00 W                  | 0.13 % OR                                    | Calibrator          |
| Measuring Instruments <sup>1,2</sup> | 48 384.0 <mark>0 VAR</mark>  | 0.18 % OR                                    | FLUKE 6100B         |
|                                      | PF = 0.5                     |                                              |                     |
|                                      | 4 0320.00 W                  | 0.24 % OR                                    |                     |
|                                      | 6 9836.29 VAR                | 0.09 % OR                                    |                     |
|                                      | PF = 0.2                     |                                              |                     |
|                                      | 16 128.00 W                  | 0.65 % OR                                    |                     |
|                                      | 79 010.74 VAR                | 0.06 % OR                                    |                     |
|                                      | (65 to 850] Hz               |                                              |                     |
| AC Power, AC Current                 | (20 to 800 A                 | 0.000.00                                     | Calibrator          |
| Measuring Instruments <sup>1,2</sup> | (20 160.0 to 80 640.0] VA    | 0.06 % OR                                    | FLUKE 6100B         |
|                                      | PF = 1                       |                                              |                     |
|                                      | 8 0640.00 W                  | 0.08 % OR                                    |                     |
|                                      | (45 to 1 000] Hz             |                                              | DIAM DATE ON 1201   |
| ACD                                  | [11 to 749] V                |                                              | DMM DATRON 1281     |
| AC Power,                            | PF range [(0.1 to 1]         | 2.2 331/331                                  | DMM DATRON 1271     |
| Generating instruments <sup>1</sup>  | [1 to 4) W                   | 2.3 mW/W                                     | CLAPMETER           |
|                                      | (4 W to 1.42 kW]             | 1 mW/W                                       | FLUKE 801-1000S     |
|                                      | (1.42 to 75] kW              | 3.5 mW/W                                     |                     |





| Parameter/Equipment                                                                           | Range 5 [including end point] (does not include end point)                                                                                                              | Expanded Uncertainty of Measurement (+/-)                                                       | Reference Standard,<br>Method, and/or<br>Equipment                                              |
|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Power factor (PF) Measurement Instruments 1,2,4                                               | [1 to 1008] V<br>[16 to 850) Hz<br>[0.01 to 80] A<br>PF = 1<br>PF = 0.9<br>PF = 0.8<br>PF = 0.7<br>PF = 0.6<br>PF = 0.5<br>PF = 0.4<br>PF = 0.3<br>PF = 0.2<br>PF = 0.1 | 0.005 5<br>0.006 7<br>0.007 9<br>0.008 9<br>0.009 6<br>0.01<br>0.011<br>0.011<br>0.011<br>0.011 | Calibrator<br>FLUKE 6100B                                                                       |
| Power factor<br>Generating Instruments <sup>1,2,4</sup>                                       | [45 to75] Hz Up to 500 V] Up to 10 A] PF range [0.1 to 1]                                                                                                               | 0.03                                                                                            | IEC 60051-9                                                                                     |
| AC Energy,<br>Single phase<br>Measuring Instruments <sup>1,2</sup>                            | [1 to 1 008] V<br>[0.01 to 80] A<br>[16 to 850] Hz<br>Max: 1 000 h                                                                                                      | 0.08 % OR                                                                                       | Calibrator<br>FLUKE 6100B                                                                       |
| Temperature, Temperature indicators and simulators for Noble metal thermocouples <sup>1</sup> | [-200 to 500) °C<br>(500 to 1 800] °C                                                                                                                                   | 0.5 °C<br>0.3 °C                                                                                | Euramet cg11 Calibration by means of electrical simulation Including cold junction compensation |
| Temperature, Temperature indicators and simulators for Base metal thermocouples <sup>1</sup>  | [-200 to 1 380] °C                                                                                                                                                      | 0.15 °C                                                                                         | Euramet cg11 Calibration by means of electrical simulation Including cold junction compensation |





| Parameter/Equipment                                                                           | Range 5 [including end point] (does not include end point)                                                                                                                                                                                                  | Expanded Uncertainty of Measurement (+/-)                                              | Reference Standard,<br>Method, and/or<br>Equipment                                              |
|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Temperature, Temperature indicators and simulators for Base metal thermocouples <sup>2</sup>  | Type E  [-250 to -100) °C  (-100 to 1 000] °C  Type J  [-210 to -100) °C  (-100 to -1 200] °C  Type K  [-200 to 1 000) °C  (1 000 to 1 372] °C  Type N  [-200 to -100) °C  (-100 to 1 300) °C  (-100 to 1 300) °C  Type T  [-250 to -150) °C  (0 to 400] °C | 0.6 °C<br>0.3 °C<br>0.4 °C<br>0.3 °C<br>0.5 °C<br>0.5 °C<br>0.7 °C<br>0.3 °C<br>0.7 °C | Euramet cg11 Calibration by means of electrical simulation Including cold junction compensation |
| Temperature, Temperature indicators and simulators for Noble metal thermocouples <sup>2</sup> | Type R, S<br>[-200 to 1 800) °C                                                                                                                                                                                                                             | 0.8 °C                                                                                 | Euramet cg11                                                                                    |
| Temperature, Temperature indicators and simulators for Resistance sensors <sup>1</sup>        | [-200 to 100] °C<br>(100 to 300] °C<br>(300 to 500] °C<br>(500 to 850] °C                                                                                                                                                                                   | 0.01 °C<br>0.02 °C<br>0.03 °C<br>0.04 °C                                               | Euramet cg11                                                                                    |

| Parameter/Equipment                                    | Range 5 [including end point] (does not include end point) | Expanded Uncertainty of Measurement (+/-) | Reference Standard,<br>Method, and/or<br>Equipment                   |
|--------------------------------------------------------|------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------|
| Calibration Factor for Power<br>Sensors <sup>1,2</sup> | [100 to 150) kHz<br>[0.15 to 1) MHz<br>[1 to 10) MHz       | 1.7 %<br>1.6 %<br>1.3 %                   | RF Reference Source Fluke<br>96270A With Power<br>Sensors: R&S Z55-1 |



| Parameter/Equipment                                      | Range 5 [including end point] (does not include end point)                                                                                                                       | Expanded Uncertainty of Measurement (+/-)                    | Reference Standard,<br>Method, and/or<br>Equipment                                                                                                                                                                                  |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Calibration Factor for Power<br>Sensors <sup>1,2,4</sup> | [10 to 499) MHz<br>[499 to 580) MHz<br>[580 to 820) MHz<br>(0.82 to 2.6] GHz<br>(2.6 to 3.3] GHz<br>(3.3 to 4.0] GHz<br>(4.0 to 4.5] GHz<br>(4.5 to 5.0] GHz<br>(5.0 to 6.0] GHz | 1.1 % 1.2 % 1.3 % 1.4 % 1.5 % 1.6 % 1.7 % 1.8 % 1.9 %        | RF REFERENCE<br>SOURCE FLOUKE<br>96270A With Power<br>Sensors: R & S Z55-1                                                                                                                                                          |
| Calibration Factor for Power<br>Sensors 1,2,4            | (6 to 8] GHz<br>(8 to 10] GHz<br>(10 to 12] GHz<br>(12 to 15] GHz<br>(15 to 18] GHz                                                                                              | 2.0 %<br>2.1 %<br>2.2 %<br>2.3 %<br>2.4 %                    | RF Reference Source<br>Fluke 96270A With<br>Power Sensors: R&S<br>Z55-1                                                                                                                                                             |
| RF Attenuation <sup>1,2</sup>                            | (0 to 4) dB<br>[300 kHz to 3 GHz]<br>(3 to 6] GHz<br>(6 to 18] GHz<br>(4 to 6) dB<br>[300 kHz to 3 GHz]<br>(3 to 6] GHz<br>(6 to 18] GHz                                         | 0.09 dB<br>0.1 dB<br>0.27 dB<br>0.1 dB<br>0.12 dB<br>0.27 dB | The uncertainties apply to the measurements of devices fitted with connectors that have input/ output VSWR not exceeding 1.1 The uncertainties will be increased for devices with higher VSWR Network analyzers: HP 8757A, HP 8753C |





| Electrical – RF/Microway      | Range <sup>5</sup>           | <b>Expanded Uncertainty of</b> | Reference Standard,       |
|-------------------------------|------------------------------|--------------------------------|---------------------------|
| Parameter/Equipment           | [including end point]        | Maggurament (+/_)              | Method, and/or            |
|                               | (does not include end point) | ivicasurement (17-)            | Equipment                 |
|                               | (6 to 40) dB                 |                                |                           |
|                               | [300 kHz to 10 MHz)          | 0.13 dB                        |                           |
|                               | (40 to 45) dB                |                                |                           |
|                               | [300 kHz to 10 MHz)          | 0.2 dB                         |                           |
|                               | (45 to 50) dB                |                                |                           |
|                               | [300 kHz to 10 MHz)          | 0.41 dB                        |                           |
|                               | (50 to 55) dB                |                                |                           |
|                               | [300 kHz to 10 MHz)          | 0.51 dB                        |                           |
|                               | (55 to 60) dB                |                                |                           |
|                               | [300 kHz to 10 MHz)          | 0.54 dB                        |                           |
| 12                            | (60 to 65) dB                |                                | Spectrum analyzer Agilent |
| RF Attenuation <sup>1,2</sup> | [300 kHz to 10 MHz)          | 0.56 dB                        | N9030A                    |
|                               | (65 to 70) dB                | A A                            |                           |
|                               | [300 kHz to 10 MHz)          | 0.64 dB                        |                           |
|                               | (70 to 75) dB                | 11 - 11                        |                           |
|                               | [300 kHz to 10 MHz)          | 0.86 dB                        |                           |
|                               | (75 to 80) dB                |                                |                           |
|                               | [300 kHz to 10 MHz)          | 1.4 dB                         |                           |
|                               | (80 to 85) dB                |                                |                           |
|                               | [300 kHz to 10 MHz)          | 2.1 dB                         |                           |
|                               | (85 to 90) dB                |                                |                           |
|                               | [300 kHz to 10 MHz)          | 3.4 dB                         |                           |
|                               | (6 to 25) dB                 |                                |                           |
|                               | [10 MHz to 3.6 GHz]          | 0.13 dB                        |                           |
|                               | (3.6 to 8.4] GHz             | 0.14 dB                        |                           |
|                               | (8.4 to 17.1] GHz            | 0.16 dB                        |                           |
|                               | (17.1 to 18] GHz             | 0.17 dB                        |                           |
|                               | [25 to 40) dB                |                                |                           |
|                               | [10 MHz to 3.6 GHz]          | 0.1 dB                         |                           |
| 12                            | (3.6 to 8.4] GHz             | 0.12 dB                        | Spectrum analyzer Agilent |
| RF Attenuation <sup>1,2</sup> | (8.4 to 17.1] GHz            | 0.16 dB                        | N9030A                    |
|                               | (17.1 to 18] GHz             | 0.17 dB                        |                           |
|                               | [40 to 80] dB                | 312, 32                        |                           |
|                               | [10 MHz to 3.6 GHz]          | 0.1 dB                         |                           |
|                               | (3.6 to 8.4] GHz             | 0.12 dB                        |                           |
|                               | (8.4 to 13.6] GHz            | 0.13 dB                        |                           |
|                               | (13.6 to 17.1] GHz           | 0.14 dB                        |                           |
|                               | (17.1 to 18] GHz             | 0.15 dB                        |                           |





| Parameter/Equipment              | Range <sup>5</sup> [including end point] (does not include end point)                                                  | Expanded Uncertainty of Measurement (+/-)                      | Reference Standard,<br>Method, and/or<br>Equipment                                                                                                                                                             |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Power Source 1,2                 | [-100 to -35) dBm)<br>(100 kHz to 60 MHz]<br>(60 MHz to 16 GHz]<br>(8 to 16] GHz<br>(16 to 26.5] GHz                   | 0.16 dB<br>0.3 dB<br>0.41 dB<br>0.52 dB                        | RF Reference Source FLUKE 96270A for absolute power offset measurement + Spectrum analyzer Agilent N9030A for power measurement exceeding 1.1 The uncertainties will be increased for devices with higher VSWR |
| Power Source <sup>1,2</sup>      | (-35 to 20) dBm<br>[100 kHz to 26.5 GHz]                                                                               | 0.078 dB                                                       | RF Reference<br>Source FLUKE<br>96270A                                                                                                                                                                         |
| Power Source <sup>1,2</sup>      | (20 to 44) dBm<br>[10 MHz- 2 GHz]<br>(2 to 6] GHz<br>(6 to 9] GHz<br>(9 to 13] GHz<br>(13 to 16] GHz<br>(16 to 18] GHz | 0.23 dB<br>0.24 dB<br>0.25 dB<br>0.27 dB<br>0.31 dB<br>0.39 dB | RF Reference Source<br>Fluke 96270A With<br>Power Sensors: R&S<br>Z55-1                                                                                                                                        |
| Power, Measuring Instruments 1,2 | [-130 to -110) dBm<br>[10 to 240) MHz<br>[240 MHz to 3 GHz]                                                            | 0.92 dB<br>2 dB                                                | RF Reference<br>Source FLUKE<br>96270A                                                                                                                                                                         |
| Power, Measuring Instruments 1,2 | [-110 to -35) dBm<br>[100 to 300) kHz<br>[300 kHz to 4] GHz]<br>(4 to 26.5] GHz                                        | 0.054 dB<br>0.049 dB<br>0.1 dB                                 | RF Reference Source Fluke 96270A With Power Sensors: R&S Z55-1 with automatic dynamic attenuator and generator error correction                                                                                |
| Power, Measuring Instruments 1,2 | [-35 to 20) dBm<br>[100 kHz to 14 GHz]<br>(14 to 26.5] GHz                                                             | 0.02 dB<br>0.026 dB                                            | RF Reference Source<br>Fluke 96270A With<br>Power Sensors: R&S<br>Z55-1                                                                                                                                        |





| Parameter/Equipment                                    | Range 5 [including end point] (does not include end point)                                                                        | Expanded Uncertainty of Measurement (+/-)                                 | Reference Standard,<br>Method, and/or<br>Equipment                                                                                                |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Power, Measuring Instruments <sup>1,2</sup>            | 20 dBm [100 kHz to 18 GHz] (20 to 44] dBm (10 MHz to 6 GHz] (2 to 6] GHz (6 to 9] GHz (9 to 13] GHz (13 to 16] GHz (16 to 18] GHz | 0.026 dB<br>0.23 dB<br>0.24 dB<br>0.25 dB<br>0.27 dB<br>0.3 dB<br>0.38 dB | Power sensor<br>HP 8481B, HP 8482A,<br>HP 8485A                                                                                                   |
| Relative Power Sources <sup>1,2</sup>                  | [-80 to -35] dB<br>[100 kHz to 3.6 GHz)<br>(3.6 to 8.4) GHz<br>(8.4 to 13.6) GHz<br>(13.6 to 26.5] GHz                            | 0.15 dB<br>0.27 dB<br>0.35 dB<br>0.41 dB                                  | Spectrum Analyzer<br>Agilent N9030A                                                                                                               |
|                                                        | [-35 to 20) dB<br>[100 kHz to 26.5 GHz]                                                                                           | 0.08 dB                                                                   | RF Reference<br>Source FLUKE<br>96270A<br>Power sensor<br>R & S                                                                                   |
| Relative Power Sources <sup>1,2</sup>                  | (20 to 44] dB<br>[10 MHz to 18 GHz]<br>(6 to 9] GHz<br>(9 to 13] GHz<br>(13 to 16] GHz<br>(16 to 26.5] GHz                        | 0.08 dB<br>0.09 dB<br>0.01 dB<br>0.11 dB<br>0.12 dB                       | High Frequency<br>Power sensor<br>HP 8481B                                                                                                        |
| Relative Power Measuring Instruments <sup>1,2</sup>    | [-110 to -35) dBm<br>(100 kHz to 10 MHz)<br>[10 MHz to 4 GHz]<br>(4 to 18] GHz<br>(18 to 26.5] GHz                                | 0.054 dB<br>0.044 dB<br>0.098 dB<br>0.1 dB                                | RF Reference Source<br>Fluke 96270A With<br>Power Sensors: R&S<br>Z55-1 with automatic<br>dynamic attenuator<br>and generator error<br>correction |
| Relative Power<br>Measuring Instruments <sup>1,2</sup> | (-35 to 20) dB<br>[100 kHz to 26.5 GHz]                                                                                           | 0.014 dB                                                                  | RF Reference Source Fluke<br>96270A With Power<br>Sensors: R&S Z55-1                                                                              |
| Relative Power Measuring Instruments 1,2               | (20 to 44) dB<br>[10 MHz to 18 GHz]                                                                                               | 0.08 dB                                                                   | High Frequency Power sensor HP 8481B                                                                                                              |
| Resolution Bandwidth                                   | (-35 to 20) dB<br>(10 Hz - 15 MHz)                                                                                                | 0.07 dB                                                                   | 0.07 dB                                                                                                                                           |

ANSI National Accreditation Board



| Parameter/Equipment                             | Range 5 [including end point] (does not include end point)                                           | Expanded Uncertainty of Measurement (+/-)                                                       | Reference Standard,<br>Method, and/or<br>Equipment |
|-------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Amplitude Modulation,<br>Sources <sup>1,2</sup> | carrier: [1 MHz to 26.5 GHz] modulation rate: [50 Hz to 10 kHz] modulation depth: [1 to 99] %        | 0.00164 x MODULATION<br>DEPTH + 0.022                                                           | Spectrum<br>Analyzer<br>Agilent N9030A             |
| Frequency Modulation, Sources 1,2               | carrier: [1 MHz to 26.5 GHz] modulation rate: [20 Hz to 20 kHz) frequency deviation: 200 Hz to 4 kHz | $\sqrt{1.57\% \text{ of rdg.}^2 + 3 \text{Hz}^2}$                                               | Spectrum<br>Analyzer<br>Agilent N9030A             |
| Frequency Modulation, Sources 1,2               | carrier: [1 MHz to 26.5 GHz] modulation rate: [20 to 50] kHz frequency deviation: [4 to 40] kHz      | $\sqrt{3.30\% \text{ of rdg.}^2 + 30 \text{Hz}^2}$                                              | Spectrum<br>Analyzer<br>Agilent N9030A             |
| Frequency Modulation, Sources 1,2               | carrier: [1 MHz to 26.5 GHz] modulation rate: [20 to 50] kHz frequency deviation: [40 to 400] kHz    | $\sqrt{0.69\% \text{ of rdg.}^2 + 210\text{Hz}^2}$                                              | Spectrum<br>Analyzer<br>Agilent N9030A             |
| Phase Modulation<br>Sources <sup>1,2</sup>      | carrier: [1 MHz to 26.5 GHz] modulation rate: [50 Hz to 50 kHz] phase deviation: [0.2 to 100] rad    | 0.12 % of rdg. + 0.02 rad                                                                       | Spectrum<br>Analyzer<br>Agilent N9030A             |
| Distortion,<br>Sources                          | [0.001 to 100] %:<br>[20 Hz to 20 kHz]<br>(20 to 100] kHz                                            | $\sqrt{(13.9\% \text{ OR})^2 + (0.00058 \%)^2}$ $\sqrt{(29.0\% \text{ OR})^2 + (0.00058 \%)^2}$ | HP 8903 Audio Analyzer                             |





| Parameter/Equipment                        | Range <sup>5</sup> [including end point] (does not include end point)                                                                                                                                                 | Expanded Uncertainty of Measurement (+/-)                                                                                          | Reference Standard,<br>Method, and/or<br>Equipment                                                                                                                                                                                                     |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Voltage reflection coefficient (VRC) 1,2,4 | [300 kHz to 3 GHz] (0 to 0.01) (0.01 to 0.1) (0.1 to 0.2) (0.2 to 0.3) (0.3 to 0.4) (0.4 to 0.5) (0.5 to 0.6) (0.6 to 0.7) (0.7 to 0.8) (0.4 to 0.5) (0.5 to 0.6) (0.5 to 0.6) (0.7 to 0.8) (0.9 to 0.8) (0.9 to 1.0) | 0.008<br>0.009<br>0.01<br>0.012<br>0.014<br>0.016<br>0.019<br>0.023<br>0.026<br>0.016<br>0.019<br>0.023<br>0.026<br>0.016<br>0.019 | The results may also be expressed in terms of VSWR or Return Loss (dB) with uncertainties stated in the appropriated units. Network Analyzer HP 8753C The uncertainties are for one-port or two-port device with greater than 25 dB transmission loss. |
| Voltage reflection coefficient (VRC) 1,2,4 | (3 to 6] GHz (0 to 0.01) (0.01 to 0.1) (0.1 to 0.2) (0.2 to 0.3) (0.3 to 0.4) (0.4 to 0.5) (0.5 to 0.6) (0.6 to 0.7) (0.7 to 0.8) (0.8 to 0.9) (0.9 to 1.0)                                                           | 0.012<br>0.013<br>0.015<br>0.018<br>0.022<br>0.025<br>0.03<br>0.035<br>0.04<br>0.046<br>0.052                                      | The results may also be expressed in terms of VSWR or Return Loss (dB) with uncertainties stated in the appropriated units. Network Analyzer HP 8753C The uncertainties are for one-port or tow-port device with greater than 25 dB transmission loss. |
| Voltage reflection coefficient (VRC) 1,2,4 | (6 to 12] GHz<br>(0.00 to 1.00]<br>(12 to 18] GHz<br>(0.01 to 1.00] GHz                                                                                                                                               | 0.034<br>0.042                                                                                                                     | Network Analyzer<br>HP 8757A                                                                                                                                                                                                                           |

**Length – Dimensional Metrology** 

Version 013 Issued: June 14, 2024

| Parameter/Equipment                                              | Range 5 [including end point] (does not include end point) | Expanded Uncertainty of Measurement (+/-) | Reference Standard,<br>Method, and/or Equipment |
|------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------|-------------------------------------------------|
| Length, Dimensions of Traffic Camera's Loop Field <sup>2,3</sup> | [1 to 5] m                                                 | (1 + L/2) mm                              | Reference Measuring Tape                        |

ANAB
ANSI National Accreditation Board



**Length – Dimensional Metrology** 

| Length – Dimensional Met                                       | rology                                                     |                                           | 1                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter/Equipment                                            | Range 5 [including end point] (does not include end point) | Expanded Uncertainty of Measurement (+/-) | Reference Standard,<br>Method, and/or Equipment                                                                                                                                                                                                                                                                                                       |
| Traffic Speed, Gatso Loop Detector Traffic Cameras 1,2         | [20 to 250] km/h                                           | 1 km/h                                    | Calibration of Gatso loop detector traffic speed cameras by means of 4 lanes simulator.  The scope of accreditation comprises conducting camera self-tests and speed limit accuracy tests. The results of these tests may be included in the calibration certificates.                                                                                |
| Distance- Calibration of City<br>Train Tachograph <sup>2</sup> | (875 to 885) m                                             | 2 m                                       | Reference Measuring Tape<br>CP 25.240                                                                                                                                                                                                                                                                                                                 |
| Speed -Calibration of City<br>Train Tachograph <sup>2</sup>    | (10 to 70) km/h                                            | 0.45 km/h                                 | GPS Standard Instrument The scope of accreditation comprises tests hereafter. The results may be included in the certificates. Tachograph, Functional tests according regulator's specification Functional tests will cover items (a), (b), (c), (d), (e), (f), (g), (h), (i), (j), (k), (l), (m). Chapter 5 paragraph 20(5) of Railroad Regulations. |
| Perpendicularity,<br>Height Gauge <sup>1</sup>                 | (-1 to 1) mm<br>(gauge height up to 600<br>mm)             | 5 μm                                      | JIS B7517; BS 1643<br>Gauge blocks, Angle Plate<br>WYLER                                                                                                                                                                                                                                                                                              |
| Perpendicularity,<br>Squares <sup>1</sup>                      | [0 to 300] mm<br>(300 to 600] mm                           | 3 μm<br>5 μm                              | JIS B 7526; DIN 875 Height up to 600 mm Grade "00" Standard Angle plate WYLER, Gauge blocks.                                                                                                                                                                                                                                                          |
| Angle,<br>Sine Bars <sup>1</sup>                               | [0 to 45]°                                                 | 22 μrad                                   | DIN 2273; JIS B 7523 BS 3064 Base length up to 200 mm Grade "1" Gauge blocks, Angle gauges                                                                                                                                                                                                                                                            |
| Angle, Bevel protractors <sup>1</sup>                          | (-90 to 90)°                                               | 0.6 mrad                                  | BS 1685; GGG-P-676b<br>Angle gauges TSUGAMI<br>Scale interval 5'                                                                                                                                                                                                                                                                                      |



Length – Dimensional Metrology

| Length – Dimensional Metrology                         |                                                                                                                         |                                           |                                                                                                                                                         |
|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter/Equipment                                    | Range 5 [including end point] (does not include end point)                                                              | Expanded Uncertainty of Measurement (+/-) | Reference Standard,<br>Method, and/or Equipment                                                                                                         |
| Angle,<br>Levels <sup>1</sup>                          | Up to $\pm 3$ '<br>$\pm (3 \text{ to } \pm 10]$ '<br>$\pm (10 \text{ to } \pm 20]$ '<br>$\pm (20 \text{ to } \pm 30]$ ' | 0.5"<br>1"<br>2"<br>3"                    | JIS B 7510; DIN 877;<br>BS 958; BS 3509<br>Small angles generator,<br>1 μm/m sensitivity                                                                |
| Form,<br>Flatness,<br>Surface Plates,<br>Granite 1,2,3 | ISO 8512-2,<br>BS 817,<br>DIN 876<br>Grades                                                                             | (2 + 0.5×L) μm                            | Surface Plate 250 x 250 mm minimum size up to 4 m in diagonal Grade "0" Electronic level WYLER                                                          |
| Gauge Blocks <sup>1,3</sup>                            | [0.5 to 100] mm                                                                                                         | (0.1 + L) μm                              | ISO 3650; DIN 861; BS 888; ISO 3650; BS 4311 Gauge blocks, Comparator Tesa, The calibration method is the comparison                                    |
| Length Bars 1,3                                        | [1 to 1 000] mm                                                                                                         | (1+5×L) μm                                | BS 870; JIS B 7502; DIN 863-1 Gauge blocks, Comparator (Dial indicator MAHR, length measuring instrument MAHR) The calibration method is the comparison |
| Caliper 1,2,3                                          | [0.5 to 1 000] mm                                                                                                       | (15+20×L) μm                              | ISO 6906; ISO 3599;<br>DIN 862; JIS B 7507<br>Gauge blocks,<br>CMC stands for caliper<br>resolution 0.01 mm.                                            |
| Depth Caliper <sup>1,2,3</sup>                         | Up to 200 mm                                                                                                            | (10+10×L) μm                              | DIN 862 CMC stands for caliper resolution 0.01 mm. Gauge blocks, Depth micro checker                                                                    |
| Micrometer<br>External <sup>1,2,3</sup>                | Up to 100 mm <sup>1</sup> Up to 100 mm <sup>2</sup> (100 to 1 000] mm <sup>1</sup>                                      | 2 μm<br>3 μm<br>(2+8×L) μm                | ISO 3611; DIN 863;<br>JIS B 7502<br>Gauge blocks<br>CMC stands for resolution<br>0.001 mm                                                               |
| Micrometer<br>Internal, Duo-bore <sup>1</sup>          | [30 to 100] mm                                                                                                          | 3 μm                                      | DIN 863<br>Standard Plain rings                                                                                                                         |





| Length – Dimensional Metrology                          |                                                            |                                           |                                                                                                                                       |
|---------------------------------------------------------|------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Parameter/Equipment                                     | Range 5 [including end point] (does not include end point) | Expanded Uncertainty of Measurement (+/-) | Reference Standard,<br>Method, and/or Equipment                                                                                       |
| Micrometer Depth <sup>1</sup>                           | Up to 200 mm                                               | 2 μm                                      | DIN 863 Depth micro checker, Mitutoyo, Measuring machine                                                                              |
| Micrometers, Indicating,<br>Main Scale <sup>1</sup>     | Up to 100 mm                                               | 2 μm                                      | JIS B 7520 Gauge blocks CMC stands for resolution 0.001 mm                                                                            |
| Micrometers, Indicating<br>Indicator Scale <sup>1</sup> | ± 0.06 mm                                                  | 1 μm                                      | JIS B 7520                                                                                                                            |
| Micrometer<br>Internal, Tri-o- Bore <sup>1</sup>        | [5 to 100] mm                                              | 2 μm                                      | DIN 863<br>Standard Plain Rings                                                                                                       |
| Height Gauge <sup>1,2,3</sup>                           | Up to 1 000 mm                                             | (2+4×L) μm                                | JIS B7517; BS 1643 Gauge blocks CMC stands for resolution 0.001 mm                                                                    |
| Dial Gauge <sup>1</sup>                                 | Up to 100 mm                                               | 1 μm                                      | DIN 878; JIS B7503; ANSI/ASME B89.1.10M XPE-11-056 Calibration Testers Mitutoyo, Measuring machine, CMC stands for resolution 0.1  µm |
| Dial Gauge Lever <sup>1</sup>                           | (-0.1 to 0.1) mm                                           | 1.5 μm                                    | DIN 2270; JIS B 7533 Calibration Testers Mitutoyo, Measuring machine CMC stands for resolution of 0.2 µm                              |
| Dial Indicator Symmetric Scale <sup>1</sup>             | (-0.25 to 0.25) mm                                         | 1 μm                                      | DIN 879 Calibration testers Mitutoyo, Plain Rings CMC stands for resolution of 0.1 µm                                                 |
| Bore Gauges <sup>1</sup>                                | [3.6 to 100] mm                                            | 2 μm                                      | JIS B 7515 Calibration Testers Mitutoyo, Plain rings CMC stands for resolution of 0.5 μm                                              |
| Extensometer <sup>1,2</sup>                             | Up to 5 mm                                                 | 3.5 μm                                    | ISO 9513; JIS B 7741;<br>ASTME B3; BS 3846<br>Standard Extensometer<br>Standard Dial Gauge                                            |





Version 013 Issued: June 14, 2024

| Length – Dimensional Me                                            | Length – Dimensional Metrology                             |                                           |                                                                                              |  |  |
|--------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------|--|--|
| Parameter/Equipment                                                | Range 5 [including end point] (does not include end point) | Expanded Uncertainty of Measurement (+/-) | Reference Standard,<br>Method, and/or Equipment                                              |  |  |
| Measuring table scale, Microscope 1,2                              | Up to 275 mm                                               | 5 μm                                      | JIS B 7153 Standard Glass Scale CMC stands for magnification of x50 and resolution of 1 μm   |  |  |
| Comparator-<br>Tesa Modul UPC <sup>1</sup>                         | (-0.01 to 0.01) mm                                         | 0.05 μm                                   | EURAMET/ cg-02<br>Gauge blocks, CMC stands for<br>max. nom. Length for<br>comparison 100 mm. |  |  |
| Horizontal Measuring Machine 1,3                                   | Up to 250 mm                                               | (0.12+3×L) μm                             | Gauge blocks CMC stands for resolution of 0.1 μm                                             |  |  |
| Depth Microchecker <sup>1,3</sup>                                  | Up to 300 mm                                               | (1+3×L) μm                                | Gauge blocks                                                                                 |  |  |
| Length, Electrical Comparator <sup>1</sup>                         | (-1 to 1) mm                                               | 0.3 μm                                    | Gauge blocks CMC stands for resolution of 0.1 μm                                             |  |  |
| Length, Calibration Testers For Dial Gauges <sup>1</sup>           | Up to 25 mm                                                | 0.8 μm                                    | Gauge blocks Electrical Comparator L-in meters CMC stands for resolution of 0.5 μm           |  |  |
| Length, Calibration Testers For Precision Dial Gauges <sup>1</sup> | Up to 5 mm                                                 | 0.4 μm                                    | Gauge blocks Electrical Comparator L-in meters CMC stands for resolution of 0.1 μm           |  |  |
| Length,<br>Metal Rulers <sup>1</sup>                               | Up to 1 m<br>(1 to 2] m                                    | 0.2 mm<br>0.3 mm                          | Standard 1 m long Engineering<br>Metal Rule<br>JIS B 7516-1987                               |  |  |
| Metal Rulers <sup>1</sup> Straightness, Squareness                 | Up to 1 mm                                                 | 0.04 mm<br>0.003 mm                       | Standard 1 m long Engineering<br>Metal Rule<br>JIS B 7516-1987                               |  |  |
| Length, Steel Tape<br>Measures 1,3                                 | Up to 4 m<br>(4 to 50] m                                   | 0.4mm<br>(0.4 + 0.3xL/4) mm               | Standard 4 m long Metal Rule<br>OIML R 35-1                                                  |  |  |
| Length, Non-metallic Tape<br>Measures <sup>1,3</sup>               | Up to 4 m<br>(4 to 50] m                                   | 1.4 mm<br>(1 + 0.35xL) mm                 | Standard 4 m long Metal Rule<br>OIML R 35-1                                                  |  |  |
| Length Laser Distance Measurer 1                                   | Up to 4 m<br>24 m                                          | 1 mm<br>3 mm                              | Standard 4 m long rule<br>Standard 24 m long set up                                          |  |  |
| Thickness,<br>Feeler Gauge <sup>1</sup>                            | [0.01 to 2] mm                                             | 1 μm                                      | JIS B 7524; DIN 2275<br>Measuring machine Standard<br>Gauge Block                            |  |  |

ANAB
ANSI National Accreditation Board



| <b>Length – Dimensional Met</b>                                        | rology                                                                |                                           |                                                                                                                                                                                                                                                     |
|------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter/Equipment                                                    | Range <sup>5</sup> [including end point] (does not include end point) | Expanded Uncertainty of Measurement (+/-) | Reference Standard,<br>Method, and/or Equipment                                                                                                                                                                                                     |
| Thickness, Thickness Gage <sup>1,2</sup> Resolution 0.5 μm             | Up to 50 mm                                                           | 1 μm                                      | Standard Gauge Block                                                                                                                                                                                                                                |
| Thickness, Dial Caliper Gage <sup>1,2</sup> Resolution 0.01 μm         | Up to 150 mm                                                          | 0.01 mm                                   | Standard Gauge Block                                                                                                                                                                                                                                |
| Diameter<br>Plain Plug Gauges <sup>1,3</sup>                           | [0.5 to 150] mm                                                       | (1+3×D) μm                                | BS 969; ISO/R 1938;<br>DIN 7150; DIN 7162;<br>DIN 2269<br>Measuring machine Standard<br>Plugs                                                                                                                                                       |
| Major Diameter, Thread Plug<br>Gauges, Parallel <sup>1</sup>           | [0.5 to 150] mm                                                       | 2 μm                                      | ISO 965; ISO 724;                                                                                                                                                                                                                                   |
| Simple Pitch Diameter,<br>Thread Plug Gauges,<br>Parallel <sup>1</sup> | [0.5 to 150] mm                                                       | 3 μm                                      | ISO 965; ISO 724; ISO 1502; FED - STD H28/6A; ANSI/ASME B1.2; ISO 5864; ISO 228/1; ISO 228/2; ANSI/ASME B1.20.1; FED-STD H28/7A; BS 84; BS 919; MIL-ST-21309E; BS 3409; BS 2710 Measuring machine, Wires for screw thread measuring, Standard Plugs |





| Length - Dimensional Met                                                       | rology                                                                |                                           |                                                                                                                                     |
|--------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Parameter/Equipment                                                            | Range <sup>5</sup> [including end point] (does not include end point) | Expanded Uncertainty of Measurement (+/-) | Reference Standard,<br>Method, and/or Equipment                                                                                     |
| Pitch Diameter, Thread Plug<br>Gauges, Tapered <sup>1</sup>                    | [1.5 to 150] mm                                                       | 5 μm                                      | ANSI/ASME B1.20.1; BS 21; ISO 7; DIN 2999; ASME B1.20.5; AS 2710 Measuring machine, Wires for screw thread measuring Standard Plugs |
| Major Diameter, Thread Plug<br>Gauges, Tapered <sup>1</sup>                    | [1.5 to 150] mm                                                       | 3 μm                                      | ANSI/ASME B1.20.1; BS 21; ISO 7; DIN 2999; ASME B1.20.5; AS 2710 Measuring machine, Standard Plugs                                  |
| Stand off from Reference Plane Thread Ring Gauges, Tapered sizes 1/16" to 3" 1 | [-5 to 5] mm                                                          | 20 μm                                     | ISO 7-2;<br>ANSI/ASME B1.20.1<br>Standard Check Plug Gauges                                                                         |
| Dimension Thread Ring Gauges, Tapered sizes 1/16" to 6" 1                      | [1 to 50] mm                                                          | 4 μm                                      | ISO 7-2;<br>ANSI/ASME B1.20.1<br>Length dimensions                                                                                  |
| Diameter, Plain Ring Gauges, Parallel <sup>1</sup>                             | [2.5 to 200] mm                                                       | 1.5 μm                                    | BS 969; ISO/R 1938;<br>DIN 7150; DIN 7162;<br>BS 4064;<br>ANSI/ASME B89. 1.6 M<br>Standard Ring Gauges,<br>Measuring machine        |
| Diameter,<br>Thread Measuring, Wires <sup>1</sup>                              | [0.15 to 4] mm                                                        | 0.6 μm                                    | JIS B 0271; BS 5590<br>Measuring machine, Standard<br>Wires                                                                         |





| Parameter/Equipment                                                                   | Range 5 [including end point] (does not include end point)        | Expanded Uncertainty of Measurement (+/-)                          | Reference Standard,<br>Method, and/or Equipment                                                                                                                                                                              |
|---------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Simple Pitch Diameter,<br>Minor Diameter Thread Ring<br>Gauges, Parallel <sup>1</sup> | [4 to 200] mm                                                     | 3 μm                                                               | ISO 965; ISO 724; ISO 1502; ANSI/ASME B.1.2; ISO 5864; ISO 228/1; ISO 228/2; ANSI/ASME B.1.20.1; FED-STD H28/7A; BS 919; AS 2710 Measuring machine, Standard Feelers for the thread measurement Standard Ring Gauge Parallel |
| Measuring table scale, Profile Projector 1,2                                          | Up to 275 mm                                                      | 5 μm                                                               | JIS B 7153; JIS B 7184<br>Standard Glass Scale<br>CMC stands for magnification<br>of x50 and resolution of 1 μm                                                                                                              |
| Opening size,<br>Test sieves <sup>1,2</sup>                                           | [20 µm to 5.6. mm] <sup>1</sup> [6.3 mm to 125 mm] <sup>1,2</sup> | 4 μm or ¼ of Y whichever greater  0.5 mm or ¼ of Y whichever lower | BS 410-1; BS410-2; ASTM E11; ASTM E323-09 Y – tolerance of average opening size for wire test sieves or individual hole size tolerance for perforated sieve. Caliper Optical projector                                       |

### **Mass and Mass Related**

Version 013 Issued: June 14, 2024

| Parameter/Equipment                             | Range <sup>5</sup> [including end point] (does not include end point) | Expanded Uncertainty of<br>Measurement (+/-) | Reference Standard,<br>Method, and/or<br>Equipment         |
|-------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------|
| Torque Torque Wrenches and Drivers 1            | [0.05 to 1 000) N·m                                                   | 0.75 % of Readings of Standard<br>Instrument | Standard BS EN ISO<br>6789;<br>ASME B107.300<br>Transducer |
| Torque Torque Wrenches and Drivers <sup>2</sup> | [0.05 to 50] N·m                                                      | 1 % of Readings of Standard<br>Instrument    | Standard BS EN ISO<br>6789;<br>ASME B107.300<br>Transducer |

ANSI National Accreditation Board



## Mass and Mass Related

| Parameter/Equipment                                                        | Range <sup>5</sup> [including end point] (does not include end point)    | Expanded Uncertainty of Measurement (+/-)                                                                                              | Reference Standard,<br>Method, and/or<br>Equipment                                                |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Torque Mechanical and Electronic Torque Calibration Equipment <sup>1</sup> | [0.05 to 1 000] N·m                                                      | 0.1 % of Readings                                                                                                                      | Standard BS 7882;<br>ASME B107.300;<br>Euramet cg-14<br>Mass and Lever                            |
| Force Compression <sup>1,2</sup> Tension <sup>1,2</sup>                    | (0 to 1.5] kN                                                            | 0.03 % of Readings of Standard<br>Instrument                                                                                           | Standard ISO 376<br>Standard ISO 7500-1<br>Standard weights                                       |
| Force Compression <sup>1,2</sup> Tension <sup>1,2</sup>                    | [1.5 to 100] kN                                                          | 0.15 % of Readings of Standard<br>Instrument                                                                                           | Standard ISO 376<br>Standard ISO 7500-1<br>Standard load Cell                                     |
| Force Compression <sup>1,2</sup> Tension <sup>1,2</sup>                    | [100 to 400] kN                                                          | 0.08 % of Readings of Standard<br>Instrument                                                                                           | Standard ISO 376<br>Standard ISO 7500-1<br>Standard load Cell                                     |
| Force Compression <sup>1,2</sup> Tension <sup>2</sup>                      | [400 to 1 000] kN                                                        | 0.08 % of Readings of Standard<br>Instrument                                                                                           | Standard ISO 376<br>Standard ISO 7500-1<br>Standard load Cell                                     |
| Force<br>Compression 1,2                                                   | (1 000 to 2 000] kN                                                      | 0.08 % of Readings                                                                                                                     | Standard ISO 376<br>Standard ISO 7500-1<br>Standard load Cell                                     |
| Force<br>Compression <sup>2</sup>                                          | (2 000 to 5 000] kN                                                      | 0.33 % of Readings                                                                                                                     | Standard ISO 376<br>Standard ISO 7500-1<br>Standard load Cell                                     |
| Mass,<br>Weights <sup>1</sup>                                              | 1 mg 2 mg 5 mg 10 mg 20 mg 50 mg 100 mg 200 mg 500 mg 500 mg 1 g 2 g 5 g | 0.003 3 mg<br>0.003 3 mg<br>0.003 3 mg<br>0.003 3 mg<br>0.004 mg<br>0.005 mg<br>0.006 mg<br>0.007 mg<br>0.007 mg<br>0.01 mg<br>0.01 mg | OIML R111-1; OIML<br>R52;<br>Standard Weights Class<br>E1,<br>Standard Comparator,<br>Comparison. |





## Mass and Mass Related

| Parameter/Equipment                                                          | Range 5 [including end point] (does not include end point)                                                                                            | Expanded Uncertainty of Measurement (+/-)                                              | Reference Standard,<br>Method, and/or<br>Equipment                                                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mass,<br>Weights <sup>1</sup>                                                | 10 g<br>20 g<br>50 g<br>100 g<br>200 g<br>500 g<br>1 kg<br>2 kg<br>5 kg<br>10 kg<br>20 kg                                                             | 0.012 mg 0.026 mg 0.05 mg 0.06 mg 0.07 mg 0.17 mg 1.6 mg 2.0 mg 150 mg 150 mg          | OIML R111-1; OIML<br>R52;<br>Standard Weights Class<br>E1,<br>Standard Comparator,<br>Comparison.                                                                                                                                                                                                                                             |
| Non-automatic Weighing<br>Instruments <sup>1,2</sup>                         | Up to 5 000 kg                                                                                                                                        | $2 \times \sqrt{\left(\frac{res}{3.4}\right)^2 + \left(\frac{mpe}{1.7}\right)^2}$      | OIML R 76-1 Euramet cg 18 res: the resolution of the balances at the calibration point mpe: maximum permissible error of the weights as defined in Table 1, OIML R 111-1 Available standard weights are: E1 from 1 mg to 5 kg, E2 from 1 mg to 5 kg, F1 from 1 mg to 10 kg F2 from 1 mg to 10 kg M1 from 100 g to 10 kg M2 10 kg (100 pieces) |
| Pneumatic Pressure - Gauge<br>Pressure measuring<br>instruments <sup>1</sup> | [-98 to -20) kPa<br>[-20 to -7) kPa<br>[-7 to -2.5) kPa<br>[-2.5 to 2.5] kPa<br>(2.5 to 7] kPa<br>(7 to 10) kPa<br>[10 kPa to 7 MPa]<br>(7 to 10] MPa | 10 Pa +0.2 Pa/kPa<br>15 Pa<br>3 Pa<br>1 Pa<br>3 Pa<br>15 Pa<br>0.25 Pa/kPa<br>1 Pa/kPa | OIML R 101;<br>OIML R 109;<br>ASME B40.100;<br>EURAMET cg 17;<br>BS EN 837;<br>BS EN ISO 5171<br>Gas Dead Weight Tester                                                                                                                                                                                                                       |





# **Mass and Mass Related**

| Parameter/Equipment                                                          | Range <sup>5</sup> [including end point] (does not include end point)                                                                                 | Expanded Uncertainty of Measurement (+/-)                                                           | Reference Standard,<br>Method, and/or<br>Equipment                                                                                               |
|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Pneumatic Pressure - Gauge<br>Pressure measuring<br>instruments <sup>2</sup> | [-95 to -20) kPa<br>[-20 to -7) kPa<br>[-7 to -2.5) kPa<br>[-2.5 to 2.5] kPa<br>(2.5 to 7] kPa<br>(7 to 20] kPa<br>(20 kPa to 6 MPa]<br>(6 to 70] MPa | 20 Pa +0.1 Pa/kPa<br>15 Pa<br>3 Pa<br>1 Pa<br>3 Pa<br>15 Pa<br>1 Pa/kPa<br>1 Pa/kPa                 | Pressure in 6 MPa to 70 MPa range generated by customer IDOS UPMP Transducer Standard Pressure Gauge                                             |
| Pneumatic Pressure - Absolute. Pressure measuring instruments <sup>1</sup>   | [2 to 80] kPa<br>(80 to 115] kPa<br>(115 kPa to 7.1 MPa]                                                                                              | $ 35 \text{ Pa} \\ 20 \text{ Pa} \\ \sqrt{[0.00025 * (P_i - P_{barometric})]^2 + 20^2} \text{ Pa} $ | $P_{i}$ – measured value of absolute pressure $P_{\text{barometric}}$ – ambient barometric pressure during the $P_{i}$ measurement.              |
| Pneumatic Pressure - Absolute. Pressure measuring instruments <sup>2</sup>   | [5 to 200) kPa<br>[200 kPa to 6.1 MPa]                                                                                                                | $\frac{120 \text{ Pa}}{\sqrt{[0.001*(P_i - P_{barometric})]^2 + 130^2}} \text{ Pa}$                 | P <sub>i</sub> – measured value of absolute pressure P <sub>barometric</sub> – ambient barometric pressure during the P <sub>i</sub> measurement |
| Hydraulic pressure - Gauge<br>Pressure measuring<br>instruments <sup>1</sup> | [0.1 to 0.16) MPa<br>[0.16 to 120] MPa                                                                                                                | 0. 3 Pa/kPa<br>0. 25 Pa/kPa                                                                         | Oil Dead Weight Tester                                                                                                                           |
| Hydraulic pressure - Gauge<br>Pressure measuring<br>instruments <sup>2</sup> | [0.1 to 70] MPa<br>(70 to 120] MPa                                                                                                                    | 1 Pa/kPa<br>0.5 MPa                                                                                 | Pressure Gauge                                                                                                                                   |

Thermodynamic

| Parameter/Equipment                                          | Range 5 [including end point] (does not include end point) | Expanded Uncertainty of Measurement (+/-) | Reference Standard,<br>Method, and/or<br>Equipment             |
|--------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------|
| Temperature,<br>Liquid in Glass<br>Thermometers <sup>1</sup> | [-60 to 250] °C<br>(250 to 500] °C                         | 0.03 °C<br>0.095 °C                       | ASTM E1; ASTM E77;<br>SPRT set, HART 1595A<br>Superthermometer |





**Thermodynamic** 

| Thermodynamic                                                                                                                                                 | Ţ                                                                                                                                                                                                                                                                                                            |                                                                                                                                           |                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter/Equipment                                                                                                                                           | Range 5 [including end point] (does not include end point)                                                                                                                                                                                                                                                   | Expanded Uncertainty of Measurement (+/-)                                                                                                 | Reference Standard,<br>Method, and/or<br>Equipment                                                                                                                 |
| Temperature, Thermocouples, Base Metal Type K, N, thermocouples <sup>1,2</sup> Temperature, Thermocouples, Noble Metal Type S, R thermocouples <sup>1,2</sup> | [-100 to -60) °C ¹ [-60 to 0] °C ¹ [0 to 50] °C ¹ (50 to 100] °C ¹ (100 to 250] °C ¹ (250 to 500] °C ¹ (500 to 600] °C ¹ (600 to 1 100] °C ¹ (1 100 to 600] °C ¹ (500 to 600] °C ¹ (500 to 600] °C ¹ (500 to 600] °C ¹ (600 to 1 100] °C ¹ (1 100 to 1 300] °C ¹ (1 100 to 1 300] °C ¹ (1 100 to 1 300] °C ¹ | 0.3 °C<br>0.1 °C<br>0.05 °C<br>0.1 ° C<br>0.15 °C<br>0.2 °C<br>0.4 °C<br>1.4 °C<br>2.3 °C<br>0.5 °C<br>0.4 °C<br>1 °C<br>1.4 °C<br>2.3 °C | ASTM E220; ASTM E230 SPRT set HART 1595A Superthermometer Type R standard thermocouple  ASTM E220; ASTM E230 SPRT set, HART 1595A Superthermometer Type R standard |
| Temperature, Extension cables <sup>1</sup>                                                                                                                    | [0 to 600] °C 2<br>[-100 to 1 300] °C                                                                                                                                                                                                                                                                        | As for thermocouples of the same type                                                                                                     | thermocouple  ASTM E220; ASTM E230  Extension cables calibrated at room temperatures                                                                               |
| Temperature, Resistance thermometers <sup>1</sup>                                                                                                             | 0.01 °C                                                                                                                                                                                                                                                                                                      | 0.003 °C                                                                                                                                  | WTP Standard cell                                                                                                                                                  |
| Temperature, Resistance thermometers <sup>1,2</sup>                                                                                                           | [-100 to -60] °C ¹<br>(-60 to 230] °C ¹<br>(230 to 500] °C ¹<br>(500 to 600] °C ¹<br>(600 to 960] °C ¹<br>[-100 to 600] °C²                                                                                                                                                                                  | 0.13 °C<br>0.023 °C<br>0.06 °C<br>0.3 °C<br>1.3 °C<br>0.3 °C                                                                              | ASTM E1137;<br>ASTM E644<br>SPRT set, HART 1595A<br>Superthermometer                                                                                               |
| Temperature, Infrared Thermometers <sup>1,6</sup>                                                                                                             | -15 °C<br>0 °C<br>15 °C<br>100 °C<br>120 °C<br>200 °C<br>300 °C<br>400 °C<br>500 °C                                                                                                                                                                                                                          | 0.8 °C<br>0.8 °C<br>0.8 °C<br>0.9 °C<br>1 °C<br>1.2 °C<br>1.5 °C<br>2 °C<br>2.5 °C                                                        | Infrared Calibrator Fluke 4180, 4181 $\epsilon = 0.95$ , $\lambda = (8 \text{ to } 14) \mu\text{m}$                                                                |
| Temperature,<br>Block Calibrators <sup>1</sup>                                                                                                                | [-100 to 100] °C<br>(100 to 250] °C<br>(250 to 660] °C<br>(660 to 1 100] °C<br>(1 100 to 1 300] °C                                                                                                                                                                                                           | 0.07 °C<br>0.1 °C<br>0.17 °C<br>1.3 °C<br>3 °C                                                                                            | Euramet cg13                                                                                                                                                       |





Thermodynamic

| 1 nermodynamic                                                        |                                                                       |                                           |                                                                                                         |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Parameter/Equipment                                                   | Range <sup>5</sup> [including end point] (does not include end point) | Expanded Uncertainty of Measurement (+/-) | Reference Standard,<br>Method, and/or<br>Equipment                                                      |
| Temperature,                                                          | [-100 to 250] °C                                                      | 0.01 °C                                   |                                                                                                         |
| Block Calibrators                                                     | (250 to 660] °C                                                       | 0.03 °C                                   | Euramet cg13                                                                                            |
| Stability test <sup>1</sup>                                           | (660 to 1 300] °C                                                     | 0.2 °C                                    |                                                                                                         |
| Temperature                                                           | [-100 to 250] °C                                                      | 0.0 3°C                                   |                                                                                                         |
| Block Calibrators                                                     | (250 to 660] °C                                                       | 0.06 °C                                   | Euramet cg13                                                                                            |
| Uniformity test <sup>1</sup>                                          | (660 to 1 300] °C                                                     | 0.4 °C                                    |                                                                                                         |
| Temperature,                                                          | [-100 to 250] °C                                                      | 0.032 °C                                  | CDDT T                                                                                                  |
| Liquid baths 1,2                                                      | (250 to 500] °C                                                       | 0.07 °C                                   | SPRT Type 5699                                                                                          |
| Temperature Liquid baths Stability test <sup>1</sup>                  | [-100 to 550] °C                                                      | 0.001 °C                                  | SPRT Type 5699                                                                                          |
| Temperature uniformity test,<br>Baths <sup>1</sup>                    | [-100 to 550] °C                                                      | 0.01 °C                                   | Standard Thermometer                                                                                    |
| Temperature,                                                          | [-60 to 90] °C                                                        | 0.5 °C                                    |                                                                                                         |
| Temperature indicators and                                            | (90 to 120] °C                                                        | 0.9 °C                                    | IEC 60397; IEC 60398                                                                                    |
| controllers in                                                        | (120 to 370] °C                                                       | 1.8 °C                                    | Secondary Standard                                                                                      |
| Furnaces, Freezers, Climatic                                          | (370 to 800] °C                                                       | 3.8 °C                                    | Thermometer sets                                                                                        |
| Rooms/ Cells 1,2                                                      | (800 to 1 300] °C                                                     | 6°C                                       |                                                                                                         |
|                                                                       | [-60 to 90] °C                                                        | 0.5 °C                                    |                                                                                                         |
| Temperature uniformity test,                                          | (90 to 120] °C                                                        | 0.9 °C                                    | IEC 60397; IEC 60398                                                                                    |
| Furnaces, Freezers, Climatic                                          | (120 to 370] °C                                                       | 1.8 °C                                    | Secondary Standard                                                                                      |
| Rooms/ Cells 1,2                                                      | (370 to 800] °C                                                       | 3.8 °C                                    | Thermometer sets                                                                                        |
|                                                                       | (800 to 1 300] °C                                                     | 6 °C                                      |                                                                                                         |
| Relative Humidity,<br>Hygrometers,<br>Humidity Recorders <sup>1</sup> | 23 °C ± 4 °C ambient<br>[10 to 80] %RH)                               | 0.8 %RH                                   | Comparison to Standard humidity probe in Humidity Generator                                             |
| Relative Humidity,<br>Hygrometers,<br>Humidity Recorders <sup>1</sup> | 23 °C ± 4 °C ambient<br>[4 to 95) %RH                                 | 0.5 %RH+ 2 % OR                           | Comparison to Standard<br>GE Dew point humidity<br>monitor with optical sensor<br>in Humidity Generator |
| Relative Humidity,<br>Hygrometers,<br>Humidity Recorders <sup>1</sup> | (25 to 60) °C<br>[35 to 95] %RH                                       | 0.5 %RH+ 2 % OR                           | Comparison to Standard GE Dew point humidity monitor with optical sensor in Temp & Humidity chamber.    |
| Dew Point <sup>1</sup>                                                | [-30 to 60] °C                                                        | 0.3 °C                                    | Standard GE Dew point humidity monitor with optical sensor                                              |





Thermodynamic

| Parameter/Equipment                                                   | Range 5 [including end point] (does not include end point) | Expanded Uncertainty of Measurement (+/-) | Reference Standard,<br>Method, and/or<br>Equipment |
|-----------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------|----------------------------------------------------|
| Relative Humidity, Indicators and controllers, Humidity Rooms/ Cells, | 23 °C ± 4 °C<br>[10 to 80] %RH                             | 1.5 %RH                                   | Temperature and humidity sensors                   |
| Uniformity test <sup>1.2</sup>                                        | [19 to 60] °C<br>(4 to 95] %RH                             | 2 %RH + 1.5 % OR                          |                                                    |

**Time and Frequency** 

| Time and Frequency                                     |                                                                                                                                                                                              |                                                                                                                                                                                                                                       |                                                    |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Parameter/Equipment                                    | Range <sup>5</sup> [including end point] (does not include end point)                                                                                                                        | Expanded Uncertainty of Measurement (+/-)                                                                                                                                                                                             | Reference Standard,<br>Method, and/or<br>Equipment |
| Time Interval, Measuring instruments <sup>1</sup>      | [150 ns to 10 s]<br>(10 to 100] s<br>(100 s to 2 h]<br>(2 to 20] h<br>(20 to 27] h                                                                                                           | $2 \times 10^{-9} \text{ s}$ $2.3 \times 10^{-10} \text{ s}$ $3.7 \times 10^{-11} \text{ s}$ $6.5 \times 10^{-12} \text{ s}$ $9.3 \times 10^{-13} \text{ s}$                                                                          | Counter HP 53131 A locked to GPS                   |
| Time Interval,<br>Mechanical Stopwatch <sup>1</sup>    | [10 s- 24 h]                                                                                                                                                                                 | 0.5 s                                                                                                                                                                                                                                 | Clock<br>locked to GPS                             |
| Time Interval,<br>Source instruments <sup>1</sup>      | [150 ns to 100 s]                                                                                                                                                                            | 2 x 10 <sup>-9</sup> s                                                                                                                                                                                                                | Counter HP 53131A<br>locked to GPS                 |
| Oscilloscopes<br>Horizontal Sensitivity <sup>1,2</sup> | 1 ns/div 2 ns/div 5 ns/div 10 ns/div 20 ns/div 50 ns/div 100 ns/div 200 ns/div 500 ns/div 5 μs/div 5 μs/div 10 μs/div 20 μs/div 50 μs/div 100 μs/div 200 μs/div 500 μs/div 1 ms/div 2 ms/div | 0.18 % OR 0.18 % OR 0.15 % OR 0.18 % OR 0.15 % OR 0.18 % OR | Fluke 5522A<br>Multiproduct Calibrator             |





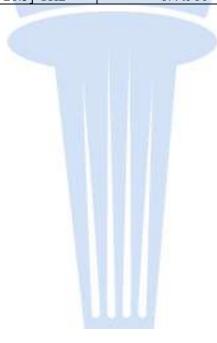
**Time and Frequency** 

| Time and Frequency                                     |                                                                                                                                                        |                                                                                                                                                                                 |                                                                                                                                                          |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter/Equipment                                    | Range 5 [including end point] (does not include end point)                                                                                             | Expanded Uncertainty of Measurement (+/-)                                                                                                                                       | Reference Standard,<br>Method, and/or<br>Equipment                                                                                                       |
| Oscilloscopes<br>Horizontal Sensitivity <sup>1,2</sup> | 5 ms/div<br>10 ms/div<br>20 ms/div<br>50 ms/div                                                                                                        | 0.15 % OR<br>0.18 % OR<br>0.18 % OR<br>0.15 % OR                                                                                                                                | Fluke 5522A<br>Multiproduct Calibrator                                                                                                                   |
| Oscilloscopes<br>Vertical Sensitivity <sup>1,2</sup>   | 50 V/div 20 V/div 10 V/div 2 V/div 1 V/div 5 V/div 500 mV/div 200 mV/div 100 mV/div 20 mV/div 20 mV/div 20 mV/div 10 mV/div 1 mV/div 1 mV/div 1 mV/div | 0.33 % OR 0.29 % OR 0.39 % OR 0.31 % OR 0.31 % OR 0.33 % OR 0.37 % OR 0.45 % OR 0.76 % OR 1.1 % OR                  | Fluke 5522A<br>Multiproduct Calibrator                                                                                                                   |
| Oscilloscopes<br>Bandwidth <sup>1,2</sup>              | [50 kHz to 100 MHz]<br>Level= 4.0 %<br>(100 MHz to 300 MHz]<br>Level= 4.3 %                                                                            | 1.2 minor divisions for a major graticule divided in 5 minor divisions  1.3 minor divisions for a major graticule divided in 5 minor divisions  1.8 minor divisions for a major | Uncertainties are for RF voltage displayed relative to a reference voltage level at 50 kHz, /6 graticules                                                |
| Oscilloscopes<br>Bandwidth <sup>1,2</sup>              | (300 MHz to 500 MHz]<br>Level= 5.9 %<br>(500 MHz to 1100 MHz]<br>Level= 6.8 %                                                                          | graticule divided in 5 minor divisions  2.0 minor divisions for a major graticule divided in 5 minor divisions                                                                  | (=30 minor divisions).  Uncertainties are for RF voltage displayed relative to a reference voltage level at 50 kHz, /6 graticules (=30 minor divisions). |





**Time and Frequency** 


| Time and Frequency                            |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D 0 0: 7 7                                                                                                                                                          |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter/Equipment                           | Range 5 [including end point] (does not include end point)                                                    | Expanded Uncertainty of Measurement (+/-)                                                                                                                                                                                                                                                                                                                                                                                                                                    | Reference Standard,<br>Method, and/or<br>Equipment                                                                                                                  |
| Frequency, Measuring Instruments <sup>1</sup> | 100 μHz to 26 GHz                                                                                             | 2.8x 10 <sup>-11</sup> OR                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IEC 60351; IEC 60548: IEC 60 624 Function Generator HP 33120A, Signal Generator HP 4432B, HP 8673B with the time base locked to GPS, Phase Comparator locked to GPS |
| Frequency Measuring Instruments <sup>2</sup>  | 100 μHz to <mark>26 GH</mark> z                                                                               | 5 x 10 <sup>-10</sup> OR                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Function Generator HP 33120A, Signal Generator HP 4432B, HP 8673B with the time base locked to the Fluke 910R                                                       |
| Frequency Sources <sup>1</sup> 24 h average   | 0.01 Hz<br>0.01 Hz<br>0.025 Hz<br>0.05 Hz<br>0.1 Hz<br>0.25 Hz<br>0.5 Hz<br>1 Hz<br>2.5 Hz<br>5 Hz            | 9.6 x 10 <sup>-6</sup> OR<br>9.6 x 10 <sup>-6</sup> OR<br>9.6 x 10 <sup>-6</sup> OR<br>9.6 x 10 <sup>-7</sup> OR<br>9.6 x 10 <sup>-7</sup> OR<br>9.6 x 10 <sup>-8</sup> OR                                                                                                                                                                               | The CMC is based on square wave. Phase comparator STANFORD RESEARCH FS 700, Counter HP 53131A and counter HP 5351B locked to GPS                                    |
| Frequency Sources <sup>1</sup> 24 h average   | 10 Hz 25 Hz 50 Hz 100 Hz 250 Hz 500 Hz 1 kHz 2.5 kHz 5 kHz 10 kHz 25 kHz 50 kHz 100 kHz 250 kHz 100 kHz 1 MHz | 9.6 x 10 <sup>-9</sup> OR<br>9.6 x 10 <sup>-9</sup> OR<br>9.6 x 10 <sup>-10</sup> OR<br>9.6 x 10 <sup>-10</sup> OR<br>9.6 x 10 <sup>-10</sup> OR<br>9.6 x 10 <sup>-10</sup> OR<br>9.6 x 10 <sup>-11</sup> OR<br>9.6 x 10 <sup>-11</sup> OR<br>9.6 x 10 <sup>-11</sup> OR<br>1 x 10 <sup>-11</sup> OR<br>1 x 10 <sup>-11</sup> OR<br>1 x 10 <sup>-12</sup> OR | The CMC is based on square wave. Phase comparator STANFORD RESEARCH FS 700, Counter HP 53131A and counter HP 5351B locked to GPS and Fluke 910R                     |





**Time and Frequency** 

| Parameter/Equipment                         | Range 5 [including end point] (does not include end point)                                                                                                                                                | Expanded Uncertainty of Measurement (+/-)                                                                                                                                                                                                                                                                                                                                                                                  | Reference Standard,<br>Method, and/or<br>Equipment                                                                                              |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Frequency Sources <sup>1</sup> 24 h average | 2.5 MHz 5 MHz 10 MHz [0.1 to 1] Hz (1 to 10] Hz (10 to 100] Hz (100 Hz to 1 kHz] (1 to 10] kHz (10 to 100] kHz (100 kHz to 3 GHz] (3 to 5] GHz (5 to 10] GHz (10 to 15] GHz (15 to 20] GHz (20 to 26] GHz | 1 x 10 <sup>-12</sup> OR<br>1 x 10 <sup>-12</sup> OR<br>1 x 10 <sup>-12</sup> OR<br>4.4 x 10 <sup>-10</sup> OR<br>4.7 x 10 <sup>-10</sup> OR<br>8.3 x 10 <sup>-11</sup> OR<br>5.5 x 10 <sup>-11</sup> OR<br>4.7 x 10 <sup>-11</sup> OR<br>4.4 x 10 <sup>-11</sup> OR<br>4.3 x 10 <sup>-11</sup> OR<br>2.3 x 10 <sup>-10</sup> OR<br>1.3 x 10 <sup>-10</sup> OR<br>9.4 x 10 <sup>-11</sup> OR<br>7.7 x 10 <sup>-11</sup> OR | The CMC is based on square wave. Phase comparator STANFORD RESEARCH FS 700, Counter HP 53131A and counter HP 5351B locked to GPS and Fluke 910R |
| Frequency Sources <sup>2</sup> 24 h average | [10 Hz to 1 GHz)<br>[1 to 10) GHz<br>[10 to 15) GHz<br>[15 to 20) GHz<br>[20 to 26.5] GHz                                                                                                                 | 5.8 x 10 <sup>-10</sup> OR<br>8.1 x 10 <sup>-10</sup> OR<br>6.9 x 10 <sup>-10</sup> OR<br>6.6 x 10 <sup>-10</sup> OR<br>6.4 x 10 <sup>-10</sup> OR                                                                                                                                                                                                                                                                         | Counter HP 53151A<br>locked to Fluke 910R GPS<br>Frequency Standard                                                                             |







## **DIMENSIONAL MEASUREMENT**

#### 1 Dimensional

| Parameter/Equipment                                    | Range            | Expanded Uncertainty of Measurement (+/-) | Reference Standard,<br>Method, and/or<br>Equipment      |
|--------------------------------------------------------|------------------|-------------------------------------------|---------------------------------------------------------|
| Length Linear Dimensions Special Gauges <sup>1</sup>   | (Up to 150 mm]   | 3 μm                                      | Length Meas. Machine<br>SIP-302M<br>Procedure 25.190    |
| Length Linear Dimensions Special Gauges <sup>1</sup>   | (Up to 150 mm]   | 0.01 mm                                   | Optical Comparator<br>Procedure 25.190                  |
| Length Linear Dimensions Special Gauges <sup>1,3</sup> | (Up to 500 mm]   | (2 + 20xL) μm                             | Length Gauge Block by<br>Comparison<br>Procedure 25.190 |
| Length Linear Dimensions Special Gauges <sup>1,3</sup> | (Up to 500 mm]   | (5 + 20xL) μm                             | Height Gauge Trimos<br>Vertical 3<br>Procedure 25.190   |
| Length Linear Dimensions Special Gauges <sup>1,3</sup> | (Up to 1 000 mm] | (0.03 + 0.1xL) mm                         | Calipers<br>Procedure 25.190                            |
| Length Linear Dimensions Special Gauges <sup>1,3</sup> | (Up to 1 000 mm] | (0.5 + 2xL)  mm                           | Metal Rulers<br>Procedure 25.190                        |
| Length Linear Dimensions Distance <sup>2,3</sup>       | (5 to 1 000 m]   | 0.1 % OR                                  | Steel Measuring Tape 50 m<br>Procedure 25.190           |

#### 2 Dimensional

Version 013 Issued: June 14, 2024

| Parameter/Equipment                   | Range         | Expanded Uncertainty of Measurement (+/-) | Reference Standard,<br>Method, and/or<br>Equipment   |
|---------------------------------------|---------------|-------------------------------------------|------------------------------------------------------|
| Angle<br>Special Gauges <sup>1</sup>  | (Up to 360°]  | 10'                                       | Optical Comparator Angle Protractor Procedure 25.190 |
| Radius<br>Special Gauges <sup>1</sup> | (Up to 20 mm] | 0.01 mm                                   | Optical Comparator<br>Procedure 25.190               |

Calibration and Measurement Capability (CMC) is expressed in terms of the measurement parameter, measurement range, expanded uncertainty of measurement and reference standard, method, and/or equipment. The expanded uncertainty of measurement is expressed as the standard uncertainty of the measurement multiplied by a coverage factor of 2 (k=2), corresponding to a confidence level of approximately 95%.

ANSI National Accreditation Board



#### Notes:

- 1. Available ranges and uncertainty for calibrations being performed on Permanent Site.
- 2. Available ranges and uncertainty for calibrations being performed on Temporary Site.
- 3. D = diameter in meters, L = length in meters, OR = "of reading"
- 4. Unitless linear measure.
- 5. The use of brackets "[]" indicate that the endpoints of the range are included within the range for the uncertainty of measurement listed and the use of parenthesis "()" indicate the endpoints are not included within the range for the uncertainty of measurement listed.
- 6. Intermediate measurement points are available for this parameter and will be estimated at time of service.
- 7. This scope is formatted as part of a single document including Certificate of Accreditation No. AC-2699.

Jason Stine, Vice President



